Do you want to publish a course? Click here

New insights on the massive interacting binary UU Cassiopeiae

88   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of the study of the close binary UU Cassiopeiae based on previously published multi wavelength photometric and spectroscopic data. Based on eclipse timings of the last 117 years, we find an improved orbital period of $rm P_{o} = 8.519296(8)$ d. In addition, we find a long cycle of length $T$ $sim$ 270 d in the $I_c$-band data. There is no evidence for orbital period change during the last century, suggesting that the rate of mass loss from the system or mass exchange between the stars should be small. Sporadic and rapid brightness drops of up to $Delta$$V$ = 0.3 mag are detected during the whole orbital cycle and infrared photometry clearly suggests the presence of circumstellar matter. We model the orbital light curve of 11 published datasets fixing the mass ratio and cool star temperature from previous spectroscopic work; $q$= 0.52 and $T_c$= 22 700 K. We find a system seen at angle 74 degrees with a stellar separation of 52 ${rm R_{odot}}$, a temperature for the hotter star $T_h$= 30 200 $K$ and stellar masses 17.4 and 9 ${rm M_{odot}}$ , radii 7.0 and 16.9 ${rm R_{odot}}$ and surface gravities log g = 3.98 and 2.94, for the hotter and cooler star, respectively. We find an accretion disk surrounding the more massive star, with a radius of 21 ${rm R_{odot}}$ and vertical thickness in its outer edge of 6.5 ${rm R_{odot}}$, mostly occulting the hotter star. Two active regions hotter than the surrounding disk are found, one located roughly in the expected position where the stream impacts the disk and the other one in the opposite side of the disk. Changes are observed in parameters of the disk and spots in different datasets.



rate research

Read More

We report on the results of a six-month photometric study of the main-belt binary C-type asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermiones physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis et al., (2005). A new effective diameter of 187 +/- 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 +0.5/-0.2 g cm-3. We infer a macroscopic porosity of ~33 +5/-20%.
New spectroscopic observations of the double-lined eclipsing binary AQ,Cas are presented. All available spectroscopic and photometric observations have been analysed for the fundamental properties of the components. Analyses show that the system consists of a massive primary with a mass of 17.63$pm$0.91 M$_{odot}$ and radius of 13.48$pm$0.64R$_{odot}$ and a secondary with 12.56$pm$0.81 M$_{odot}$ and radius of 23.55$pm$0.73 R$_{odot}$, corresponding spectral types of B0.5($pm$2) II-III + B3($pm$1) II. The secondary star fills its corresponding Roche lobe and mass transfer to the primary star is going on. This stream considerably does affect the photometric observations both starting from the second quarter up to the first contact of primary eclipse and just at the second maximum. Thus, the light curve is distorted and tightly depended on the wavelength of the observations. The available multi passband light curves have been analysed by taking the stream effects, as either hot or cool spots, into account. The comparison of the models and observations in the $log(L/L_{odot})$ - $log T_{eff}$ and $log g - log T_{eff}$ diagrams clearly shows that the more massive star is consistent with models and is predicted to be close to the phase of hydrogen shell ignition. Average distance to the system is estimated as 4150$pm$240 pc using the BVJHK magnitudes and V-passband extinction.
134 - A. Calamida 2015
We have derived the Galactic bulge initial mass function of the SWEEPS field in the mass range 0.15 $< M/M_{odot}<$ 1.0, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, F814W $sim$ 26 mag, with a proper-motion accuracy better than 0.5 mas/yr. This allowed us to determine the initial mass function of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge initial mass function can be fitted with two power laws with a break at M $sim$ 0.56 $M_{odot}$, the slope being steeper ($alpha$ = -2.41$pm$0.50) for the higher masses, and shallower ($alpha$ = -1.25$pm$0.20) for the lower masses. In the high-mass range, our derived mass function agrees well with the mass function derived for other regions of the bulge. In the low-mass range however, our mass function is slightly shallower, which suggests that separating the disk and bulge components is particularly important in the low-mass range. The slope of the bulge mass function is also similar to the slope of the mass function derived for the disk in the high-mass regime, but the bulge mass function is slightly steeper in the low-mass regime. We used our new mass function to derive stellar M/L values for the Galactic bulge and we obtained 2.1 $<M/L_{F814W}<$ 2.4 and 3.1 $< M/L_{F606W}<$ 3.6 according to different assumptions on the slope of the IMF for masses larger than 1 $M_{odot}$.
63 - John Southworth 2020
V1022 Cas has been known as a spectroscopic binary for a century. It was found to be eclipsing based on photometry from the Hipparcos satellite, and an astrometric orbit was recently obtained from near-infrared interferometry. We present the first high-precision measurement of the radii of the stars based on light curves obtained by the TESS satellite. Combined with published radial velocities from high-resolution spectra, we measure the masses of the stars to be 1.626 +/- 0.001 Msun and 1.609 +/- 0.001 Msun, and the radii to be 2.591 +/- 0.026 Rsun and 2.472 +/- 0.027 Rsun. The 12.16-d orbit is eccentric and the stars rotate sub-synchronously, so the system is tidally unevolved. A good match to these masses and radii, and published temperatures of the stars, is found for several sets of theoretical stellar evolutionary models, for a solar metallicity and an age of approximately 2 Gyr. Four separate distance determinations to the system are available, and are in good agreement. The distances are based on surface brightness calibrations, theoretical bolometric corrections, the Gaia parallax, and the angular size of the astrometric orbit. A detailed spectroscopic analysis of the system to measure chemical abundances and more precise temperatures would be helpful.
We initiated long-term optical interferometry monitoring of the diameters of unstable yellow hypergiants (YHG) with the goal of detecting both the long-term evolution of their radius and shorter term formation related to large mass-loss events. We observed HR5171 A with AMBER/VLTI. We also examined archival photometric data in the visual and near-IR spanning more than 60 years, as well as sparse spectroscopic data. HR5171A exhibits a complex appearance. Our AMBER data reveal a surprisingly large star for a YHG R*=1315+/-260Rsun (~6.1AU) at the distance of 3.6+/-0.5kpc. The source is surrounded by an extended nebulosity, and these data also show a large level of asymmetry in the brightness distribution of the system, which we attribute to a newly discovered companion star located in front of the primary star. The companions signature is also detected in the visual photometry, which indicates an orbital period of Porb=1304+/-6d. Modeling the light curve with the NIGHTFALL program provides clear evidence that the system is a contact or possibly over-contact eclipsing binary. A total current system mass of 39^{+40}_{-22} solar mass and a high mass ratio q>10 is inferred for the system. The low-mass companion of HR5171 A is very close to the primary star that is embedded within its dense wind. Tight constraints on the inclination and vsini of the primary are lacking, which prevents us from determining its influence precisely on the mass-loss phenomenon, but the system is probably experiencing a wind Roche-Lobe overflow. Depending on the amount of angular momentum that can be transferred to the stellar envelope, HR5171 A may become a fast-rotating B[e]/Luminous Blue Variable (LBV)/Wolf-Rayet star. In any case, HR5171 A highlights the possible importance of binaries for interpreting the unstable YHGs and for massive star evolution in general.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا