Do you want to publish a course? Click here

GW190521: A Binary Black Hole Merger with a Total Mass of $150 ~ M_{odot}$

127   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of $85^{+21}_{-14} M_{odot}$ and $66^{+17}_{-18} M_{odot}$ (90 % credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, and has only a 0.32 % probability of being below $65 M_{odot}$. We calculate the mass of the remnant to be $142^{+28}_{-16} M_{odot}$, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is $5.3^{+2.4}_{-2.6}$ Gpc, corresponding to a redshift of $0.82^{+0.28}_{-0.34}$. The inferred rate of mergers similar to GW190521 is $0.13^{+0.30}_{-0.11},mathrm{Gpc}^{-3},mathrm{yr}^{-1}$.

rate research

Read More

In the case of zero-metal (population III or Pop III) stars, we show that the total mass of binary black holes from binary Pop III star evolution can be $sim 150 ,M_{odot}$, which agrees with the mass of the binary black hole GW190521 recently discovered by LIGO/Virgo. The event rate of such binary black hole mergers is estimated as 0.13--0.66$~(rho_{rm SFR}/(6times10^5~M_{odot}/{rm Mpc}^3))~Err_{rm sys}~{rm yr^{-1}~Gpc^{-3}}$, where $rho_{rm SFR}$ and $Err_{rm sys}$ are the cumulative comoving mass density of Pop III stars depending on star formation rate and the systematic errors depending on uncertainties in the Pop III binary parameters, respectively. The event rate in our fiducial model with $rho_{rm SFR}=6times10^5~M_{odot}/{rm Mpc}^3$ and $ Err_{rm sys}=1$ is 0.13--0.66$~{rm yr^{-1}~Gpc^{-3}}$, which is consistent with the observed value of 0.02--0.43$~{rm yr^{-1}~Gpc^{-3}}$.
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_odot$ and $29^{+4}_{-4} M_odot$; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be $<0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $610$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14},M_{odot}$ and $66^{+17}_{-18},M_{odot}$, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120,M_{odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16},M_{odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521s source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11},{rm Gpc}^{-3},rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from 1.12 to 2.52 $M_{odot}$ (1.45 to 1.88 $M_{odot}$ if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass $1.44^{+0.02}_{-0.02} M_{odot}$ and the total mass $3.4^{+0.3}_{-0.1},M_{odot}$ of this system are significantly larger than those of any other known binary neutron star system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic binary neutron star population. Under the assumption that the signal was produced by a binary neutron star coalescence, the local rate of neutron star mergers is updated to $250-2810 text{Gpc}^{-3}text{yr}^{-1}$.
We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely the merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two non-spinning unequal mass black holes, we observe that the MOTS associated with the final black hole merges with the two initially disjoint surfaces corresponding to the two initial black holes. This yields a connected sequence of MOTSs interpolating between the initial and final state all the way through the non-linear binary black hole merger process. In addition, we show the existence of a MOTS with self-intersections formed immediately after the merger. This scenario now allows us to track physical quantities (such as mass, angular momentum, higher multipoles, and fluxes) across the merger, which can be potentially compared with the gravitational wave signal in the wave-zone, and with observations by gravitational wave detectors. This also suggests a possibility of proving the Penrose inequality mathematically for generic astrophysical binary back hole configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا