Do you want to publish a course? Click here

Exploring particle dynamics during self-organization processes via rotationally invariant latent representations

337   0   0.0 ( 0 )
 Added by Maxim Ziatdinov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamic of complex ordering systems with active rotational degrees of freedom exemplified by protein self-assembly is explored using a machine learning workflow that combines deep learning-based semantic segmentation and rotationally invariant variational autoencoder-based analysis of orientation and shape evolution. The latter allows for disentanglement of the particle orientation from other degrees of freedom and compensates for shifts. The disentangled representations in the latent space encode the rich spectrum of local transitions that can now be visualized and explored via continuous variables. The time dependence of ensemble averages allows insight into the time dynamics of the system, and in particular, illustrates the presence of the potential ordering transition. Finally, analysis of the latent variables along the single-particle trajectory allows tracing these parameters on a single particle level. The proposed approach is expected to be universally applicable for the description of the imaging data in optical, scanning probe, and electron microscopy seeking to understand the dynamics of complex systems where rotations are a significant part of the process.



rate research

Read More

Microscopic dynamics reveal the origin of the bulk rheological response in complex fluids. In model systems particle motion can be tracked, but for industrially relevant samples this is often impossible. Here we adapt differential dynamic microscopy (DDM) to study flowing highly-concentrated samples without particle resolution. By combining an investigation of oscillatory flow, using a novel echo-DDM analysis, and steady shear, through flow-DDM, we characterise the yielding of a silicone oil emulsion on both the microscopic and bulk level. Through measuring the rate of shear-induced droplet rearrangements and the flow velocity, the transition from a solid-like to liquid-like state is shown to occur in two steps: with droplet mobilisation marking the limit of linear visco-elasticity, followed by the development of shear localisation and macroscopic yielding. Using this suite of techniques, such insight could be developed for a wide variety of challenging complex fluids.
Mobile microrobots are envisioned to be useful in a wide range of high-impact applications, many of which requiring cohesive group formation to maintain self-bounded swarms in the absence of confining boundaries. Cohesive group formation relies on a balance between attractive and repulsive interactions between agents. We found that a balance of magnetic dipolar attraction and multipolar repulsion between self-assembled particle chain microrobots enable their self-organization into cohesive clusters. Self-organized microrobotic clusters translate above a solid substrate via a hydrodynamic self-propulsion mechanism. Cluster velocity increases with cluster size, resulting from collective hydrodynamic effects. Clustering is promoted by the strength of cohesive interactions and hindered by heterogeneities of individual microrobots. Scalability of cohesive interactions allows formation of larger groups, whose internal spatiotemporal organization undergoes a transition from solid-like ordering to liquid-like behavior with increasing cluster size. Our work elucidates the dynamics of clustering under cohesive interactions, and presents an approach for addressing operation of microrobots as localized teams.
Inverse patchy colloids are nano- to micro-scale particles with a surface divided into differently charged regions. This class of colloids combines directional, selective bonding with a relatively simple particle design: owing to the competitive interplay between the orientation-dependent attraction and repulsion -- induced by the interactions between like/oppositely charged areas -- experimentally accessible surface patterns are complex enough to favor the stabilization of specific structures of interest. Most important, the behavior of heterogeneously charged units can be ideally controlled by means of external parameters, such as the pH and the salt concentration. We present a concise review about this class of systems, spanning the range from the synthesis of model inverse patchy particles to their self-assembly, covering their coarse-grained modeling and the related numerical/analytical treatments.
The success of pretrained contextual encoders, such as ELMo and BERT, has brought a great deal of interest in what these models learn: do they, without explicit supervision, learn to encode meaningful notions of linguistic structure? If so, how is this structure encoded? To investigate this, we introduce latent subclass learning (LSL): a modification to existing classifier-based probing methods that induces a latent categorization (or ontology) of the probes inputs. Without access to fine-grained gold labels, LSL extracts emergent structure from input representations in an interpretable and quantifiable form. In experiments, we find strong evidence of familiar categories, such as a notion of personhood in ELMo, as well as novel ontological distinctions, such as a preference for fine-grained semantic roles on core arguments. Our results provide unique new evidence of emergent structure in pretrained encoders, including departures from existing annotations which are inaccessible to earlier methods.
Advanced satellite-born remote sensing instruments produce high-resolution multi-spectral data for much of the globe at a daily cadence. These datasets open up the possibility of improved understanding of cloud dynamics and feedback, which remain the biggest source of uncertainty in global climate model projections. As a step towards answering these questions, we describe an automated rotation-invariant cloud clustering (RICC) method that leverages deep learning autoencoder technology to organize cloud imagery within large datasets in an unsupervised fashion, free from assumptions about predefined classes. We describe both the design and implementation of this method and its evaluation, which uses a sequence of testing protocols to determine whether the resulting clusters: (1) are physically reasonable, (i.e., embody scientifically relevant distinctions); (2) capture information on spatial distributions, such as textures; (3) are cohesive and separable in latent space; and (4) are rotationally invariant, (i.e., insensitive to the orientation of an image). Results obtained when these evaluation protocols are applied to RICC outputs suggest that the resultant novel cloud clusters capture meaningful aspects of cloud physics, are appropriately spatially coherent, and are invariant to orientations of input images. Our results support the possibility of using an unsupervised data-driven approach for automated clustering and pattern discovery in cloud imagery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا