No Arabic abstract
We present a novel framework, Spatial Pyramid Attention Network (SPAN) for detection and localization of multiple types of image manipulations. The proposed architecture efficiently and effectively models the relationship between image patches at multiple scales by constructing a pyramid of local self-attention blocks. The design includes a novel position projection to encode the spatial positions of the patches. SPAN is trained on a generic, synthetic dataset but can also be fine tuned for specific datasets; The proposed method shows significant gains in performance on standard datasets over previous state-of-the-art methods.
Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, and semantic segmentation, which aims to alleviate performance degradation caused by domain-shift. Most of previous methods rely on a single-mode distribution of source and target domains to align them with adversarial learning, leading to inferior results in various scenarios. To that end, in this paper, we design a new spatial attention pyramid network for unsupervised domain adaptation. Specifically, we first build the spatial pyramid representation to capture context information of objects at different scales. Guided by the task-specific information, we combine the dense global structure representation and local texture patterns at each spatial location effectively using the spatial attention mechanism. In this way, the network is enforced to focus on the discriminative regions with context information for domain adaption. We conduct extensive experiments on various challenging datasets for unsupervised domain adaptation on object detection, instance segmentation, and semantic segmentation, which demonstrates that our method performs favorably against the state-of-the-art methods by a large margin. Our source code is available at https://isrc.iscas.ac.cn/gitlab/research/domain-adaption.
Building extraction from aerial images has several applications in problems such as urban planning, change detection, and disaster management. With the increasing availability of data, Convolutional Neural Networks (CNNs) for semantic segmentation of remote sensing imagery has improved significantly in recent years. However, convolutions operate in local neighborhoods and fail to capture non-local features that are essential in semantic understanding of aerial images. In this work, we propose to improve building segmentation of different sizes by capturing long-range dependencies using contextual pyramid attention (CPA). The pathways process the input at multiple scales efficiently and combine them in a weighted manner, similar to an ensemble model. The proposed method obtains state-of-the-art performance on the Inria Aerial Image Labelling Dataset with minimal computation costs. Our method improves 1.8 points over current state-of-the-art methods and 12.6 points higher than existing baselines on the Intersection over Union (IoU) metric without any post-processing. Code and models will be made publicly available.
Weakly supervised temporal action localization, which aims at temporally locating action instances in untrimmed videos using only video-level class labels during training, is an important yet challenging problem in video analysis. Many current methods adopt the localization by classification framework: first do video classification, then locate temporal area contributing to the results most. However, this framework fails to locate the entire action instances and gives little consideration to the local context. In this paper, we present a novel architecture called Cascaded Pyramid Mining Network (CPMN) to address these issues using two effective modules. First, to discover the entire temporal interval of specific action, we design a two-stage cascaded module with proposed Online Adversarial Erasing (OAE) mechanism, where new and complementary regions are mined through feeding the erased feature maps of discovered regions back to the system. Second, to exploit hierarchical contextual information in videos and reduce missing detections, we design a pyramid module which produces a scale-invariant attention map through combining the feature maps from different levels. Final, we aggregate the results of two modules to perform action localization via locating high score areas in temporal Class Activation Sequence (CAS). Extensive experiments conducted on THUMOS14 and ActivityNet-1.3 datasets demonstrate the effectiveness of our method.
The spatial attention mechanism captures long-range dependencies by aggregating global contextual information to each query location, which is beneficial for semantic segmentation. In this paper, we present a sparse spatial attention network (SSANet) to improve the efficiency of the spatial attention mechanism without sacrificing the performance. Specifically, a sparse non-local (SNL) block is proposed to sample a subset of key and value elements for each query element to capture long-range relations adaptively and generate a sparse affinity matrix to aggregate contextual information efficiently. Experimental results show that the proposed approach outperforms other context aggregation methods and achieves state-of-the-art performance on the Cityscapes, PASCAL Context and ADE20K datasets.
Classifying the sub-categories of an object from the same super-category (e.g. bird species, car and aircraft models) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization. Existing approaches mainly focus on distilling information from high-level features. In this paper, however, we show that by integrating low-level information (e.g. color, edge junctions, texture patterns), performance can be improved with enhanced feature representation and accurately located discriminative regions. Our solution, named Attention Pyramid Convolutional Neural Network (AP-CNN), consists of a) a pyramidal hierarchy structure with a top-down feature pathway and a bottom-up attention pathway, and hence learns both high-level semantic and low-level detailed feature representation, and b) an ROI guided refinement strategy with ROI guided dropblock and ROI guided zoom-in, which refines features with discriminative local regions enhanced and background noises eliminated. The proposed AP-CNN can be trained end-to-end, without the need of additional bounding box/part annotations. Extensive experiments on three commonly used FGVC datasets (CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that our approach can achieve state-of-the-art performance. Code available at url{http://dwz1.cc/ci8so8a}