Do you want to publish a course? Click here

CLEAR: Paschen-$beta$ Star Formation Rates and Dust Attenuation of Low Redshift Galaxies

62   0   0.0 ( 0 )
 Added by Nikko Cleri
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Pa$beta$ (1282~nm) observations from the Hubble Space Telescope ($textit{HST}$) G141 grism to study the star formation and dust attenuation properties of a sample of 32 low redshift ($z < 0.287$) galaxies in the CLEAR survey. Many of the galaxies in the sample have significantly higher Pa$beta$ emission than expected from the star formation rates (SFRs) measured from their (attenuation-corrected) UV continuum or H$alpha$ emission, suggesting that Pa$beta$ is revealing star formation that is otherwise hidden within gas that is optically thick to UV-continuum and Balmer line emission. Galaxies with lower stellar mass tend to have more scatter in their ratio of Pa$beta$ to attenuation-corrected UV SFRs. When considering our Pa$beta$ detection limits, this observation is consistent with burstier star formation histories in lower mass galaxies. We also find a large amount of scatter between the nebular dust attenuation measured by Pa$beta$/H$alpha$ and H$alpha$/H$beta$, implying that the Balmer decrement underestimates the attenuation in galaxies across a broad range of stellar mass, morphology, and observed Balmer decrement. Comparing the nebular attenuation from Pa$beta$/H$alpha$ with the stellar attenuation inferred from the spectral energy distribution, our galaxies are consistent with an average stellar to nebular ratio of 0.44, but with a large amount of excess scatter beyond the observational uncertainties. Together, these results show that Pa$beta$ is a valuable tracer of a galaxys star formation rate, often revealing star formation that is otherwise missed by UV and optical tracers.



rate research

Read More

137 - Chun Ly 2012
Using deep narrow-band and broad-band imaging, we identify 401 z~0.40 and 249 z~0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7^{+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an intrinsic H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z~0.5.
110 - Cody M. Rude 2019
Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effects than giant systems. Combined luminosity functions (LFs) in the r- and u-band of 15 galaxy clusters were constructed using archival data from the Canada-France-Hawaii Telescope. LFs were measured as a function of cluster-centric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing cluster-centric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with cluster-centric radius compared to the r-band. The dG blue fraction was found to be ~2 times larger than the giant galaxy blue fraction over all cluster-centric distance (~5sigma level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ~2 times greater in the inner cluster region compared to the outskirts (2.8sigma level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 < r/r_200 < 1.0) is steeper than the SDSS field LF, while the u-band LF is marginally steeper at the 2.5sigma level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy-galaxy interactions.
We investigate the properties (e.g. star formation rate, dust attentuation, stellar mass and metallicity) of a sample of infrared luminous galaxies at z sim 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitzer MIPS selected sources in the COSMOS field with photometric redshifts in the range 0.7 < z-phot < 1.8, which have been targeted in 2 pointings (0.5 sq. deg.) with FMOS. We find a modest success rate for emission line detections, with candidate H{alpha} emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the H{alpha} and H{beta} lines, finding a value of <E(B-V)> = 0.51pm0.27 for <LIR> = 10^12 Lsol sources at <z> = 1.36. By comparing star formation rates estimated from the IR and from the dust uncorrected H{alpha} line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ~ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ~ 1 IR-selected sources are indistinguishable from the local mass-metallicity relation. We also find a strong correlation between dust attentuation and metallicity, with the most metal-rich IR-sources experiencing the largest levels of dust attenuation.
We derive two-dimensional dust attenuation maps at $sim1~mathrm{kpc}$ resolution from the UV continuum for ten galaxies on the $zsim2$ Star-Forming Main Sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further obscuration in addition to the UV-based correction, though our sample does not include the most heavily obscured, massive galaxies. The individual rest-frame $V$-band dust attenuation (A$_{rm V}$) radial profiles scatter around an average profile that gently decreases from $sim1.8$ mag in the center down to $sim0.6$ mag at $sim3-4$ half-mass radii. We use these maps to correct UV- and H$alpha$-based star-formation rates (SFRs), which agree with each other. At masses $<10^{11}~M_{rm sun}$, the dust-corrected specific SFR (sSFR) profiles are on average radially constant at a mass-doubling timescale of $sim300~mathrm{Myr}$, pointing at a synchronous growth of bulge and disk components. At masses $>10^{11}~M_{rm sun}$, the sSFR profiles are typically centrally-suppressed by a factor of $sim10$ relative to the galaxy outskirts. With total central obscuration disfavored, this indicates that at least a fraction of massive $zsim2$ SFMS galaxies have started their inside-out star-formation quenching that will move them to the quenched sequence. In combination with other observations, galaxies above and below the ridge of the SFMS relation have respectively centrally-enhanced and centrally-suppressed sSFRs relative to their outskirts, supporting a picture where bulges are built due to gas `compaction that leads to a high central SFR as galaxies move towards the upper envelope of SFMS.
A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in the GOODS-N field at 1.5<z<3. We revisit here this sample to assess the implications and possible causes of the correlation found between Rv and B. The UVJ bicolour plot and main sequence of star formation are scrutinised to look for clues into the observed trend. The standard boundary between quiescent and star-forming galaxies is preserved when taking into account the wide range of attenuation parameters. However, an additional degeneracy, regarding the effective attenuation law, is added to the standard loci of star-forming galaxies in the UVJ diagram. A simple phenomenological model with an age-dependent extinction (at fixed dust composition) is compatible with the observed trend between Rv and B, whereby the opacity decreases with the age of the populations, resulting in a weaker NUV bump when the overall attenuation is shallower (greyer). In addition, we compare the constraints obtained by the SHARDS sample with dust models from the literature, supporting a scenario where geometry could potentially drive the correlation between Rv and B
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا