Do you want to publish a course? Click here

Large-dimensional Central Limit Theorem with Fourth-moment Error Bounds on Convex Sets and Balls

85   0   0.0 ( 0 )
 Added by Xiao Fang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove the large-dimensional Gaussian approximation of a sum of $n$ independent random vectors in $mathbb{R}^d$ together with fourth-moment error bounds on convex sets and Euclidean balls. We show that compared with classical third-moment bounds, our bounds have near-optimal dependence on $n$ and can achieve improved dependence on the dimension $d$. For centered balls, we obtain an additional error bound that has a sub-optimal dependence on $n$, but recovers the known result of the validity of the Gaussian approximation if and only if $d=o(n)$. We discuss an application to the bootstrap. We prove our main results using Steins method.



rate research

Read More

129 - S.Ekisheva , C. Houdre 2006
For probability measures on a complete separable metric space, we present sufficient conditions for the existence of a solution to the Kantorovich transportation problem. We also obtain sufficient conditions (which sometimes also become necessary) for the convergence, in transportation, of probability measures when the cost function is continuous, non-decreasing and depends on the distance. As an application, the CLT in the transportation distance is proved for independent and some dependent stationary sequences.
213 - Shige Peng 2008
We describe a new framework of a sublinear expectation space and the related notions and results of distributions, independence. A new notion of G-distributions is introduced which generalizes our G-normal-distribution in the sense that mean-uncertainty can be also described. W present our new result of central limit theorem under sublinear expectation. This theorem can be also regarded as a generalization of the law of large number in the case of mean-uncertainty.
Our purpose is to prove central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense. Furthermore, we obtain a corresponding moderate deviation theorem for countable nonhomogeneous Markov chain by Gartner-Ellis theorem and exponential equivalent method.
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$. We obtain product-CLT, a modification of classical central limit theorem, which can be useful in the study of random projections. We also obtain the rate of convergence which is similar to the Berry-Essen theorem in the classical CLT.
We give a new proof of the classical Central Limit Theorem, in the Mallows ($L^r$-Wasserstein) distance. Our proof is elementary in the sense that it does not require complex analysis, but rather makes use of a simple subadditive inequality related to this metric. The key is to analyse the case where equality holds. We provide some results concerning rates of convergence. We also consider convergence to stable distributions, and obtain a bound on the rate of such convergence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا