Do you want to publish a course? Click here

Transmission Estimation at the Cramer-Rao Bound for Squeezed States of Light in the Presence of Loss and Imperfect Detection

93   0   0.0 ( 0 )
 Added by Timothy Woodworth
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Enhancing the precision of a measurement requires maximizing the information that can be gained about the quantity of interest from probing a system. For optical based measurements, such an enhancement can be achieved through two approaches, increasing the number of photons used to interrogate the system and using quantum states of light to increase the amount of quantum Fisher information gained per photon. Here we consider the use of quantum states of light with a large number of photons, namely the bright single-mode and two-mode squeezed states, that take advantage of both of these approaches for the problem of transmission estimation. We show that, in the limit of large squeezing, these states approach the maximum possible quantum Fisher information per photon for transmission estimation that is achieved with the Fock state and the vacuum two-mode squeezed state. Since the bright states we consider can be generated at much higher powers than the quantum states that achieve the maximum quantum Fisher information per photon, they can achieve an much higher absolute precision as quantified by the quantum Cramer-Rao bound. We discuss the effects of losses external to the system on the precision of transmission estimation and identify simple measurements techniques that can saturate the quantum Cramer-Rao bound for the bright squeezed states even in the presence of such external losses.



rate research

Read More

In this letter, we show that for all the so-called path-symmetric states, the measurement of parity of photon number at the output of an optical interferometer achieves maximal phase sensitivity at the quantum Cramer-Rao bound. Such optimal phase sensitivity with parity is attained at a suitable bias phase, which can be determined a priori. Our scheme is applicable for local phase estimation.
The quantum Fisher information constrains the achievable precision in parameter estimation via the quantum Cramer-Rao bound, which has attracted much attention in Hermitian systems since the 60s of the last century. However, less attention has been paid to non-Hermitian systems. In this Letter, working with different logarithmic operators, we derive two previously unknown expressions for quantum Fisher information, and two Cramer-Rao bounds lower than the well-known one are found for non-Hermitian systems. These lower bounds are due to the merit of non-Hermitian observable and it can be understood as a result of extended regimes of optimization. Two experimentally feasible examples are presented to illustrate the theory, saturation of these bounds and estimation precisions beyond the Heisenberg limit are predicted and discussed. A setup to measure non-Hermitian observable is also proposed.
227 - Olivier Pinel 2010
Multimode Gaussian quantum light, including multimode squeezed and/or multipartite quadrature entangled light, is a very general and powerful quantum resource with promising applications to quantum information processing and metrology involving continuous variables. In this paper, we determine the ultimate sensitivity in the estimation of any parameter when the information about this parameter is encoded in such Gaussian light, irrespective of the exact information extraction protocol used in the estimation. We then show that, for a given set of available quantum resources, the most economical way to maximize the sensitivity is to put the most squeezed state available in a well-defined light mode. This implies that it is not possible to take advantage of the existence of squeezed fluctuations in other modes, nor of quantum correlations and entanglement between different modes. We show that an appropriate homodyne detection scheme allows us to reach this Cramr-Rao bound. We apply finally these considerations to the problem of optimal phase estimation using interferometric techniques.
In collisional thermometry, a system in contact with the thermal bath is probed by a stream of ancillas. Coherences and collective measurements were shown to improve the Fisher information in some parameter regimes, for a stream of independent and identically prepared (i.i.d.) ancillas in some specific states [Seah et al., Phys. Rev. Lett., 180602 (2019)]. Here we refine the analysis of this metrological advantage by optimising over the possible input ancilla states, also for block-i.i.d.~states of block size b=2. For both an indirect measurement interaction and a coherent energy exchange channel, we show when the thermal Cramer-Rao bound can be beaten, and when a collective measurement of $N>1$ ancilla may return advantages over single-copy measurements.
In this paper we use the Cramer-Rao lower uncertainty bound to estimate the maximum precision that could be achieved on the joint simultaneous (or 2D) estimation of photometry and astrometry of a point source measured by a linear CCD detector array. We develop exact expressions for the Fisher matrix elements required to compute the Cramer-Rao bound in the case of a source with a Gaussian light profile. From these expressions we predict the behavior of the Cramer-Rao astrometric and photometric precision as a function of the signal and the noise of the observations, and compare them to actual observations - finding a good correspondence between them. We show that the astrometric Cramer-Rao bound goes as $(S/N)^{-1}$ (similar to the photometric bound) but, additionally, we find that this bound is quite sensitive to the value of the background - suppressing the background can greatly enhance the astrometric accuracy. We present a systematic analysis of the elements of the Fisher matrix in the case when the detector adequately samples the source (oversampling regime), leading to closed-form analytical expressions for the Cramer-Rao bound. We show that, in this regime, the joint parametric determination of photometry and astrometry for the source become decoupled from each other, and furthermore, it is possible to write down expressions (approximate to first order in the small quantities F/B or B/F) for the expected minimum uncertainty in flux and position. These expressions are shown to be quite resilient to the oversampling condition, and become thus very valuable benchmark tools to estimate the approximate behavior of the maximum photometric and astrometric precision attainable under pre-specified observing conditions and detector properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا