Do you want to publish a course? Click here

Modeling disk fragmentation and multiplicity in massive star formation

140   0   0.0 ( 0 )
 Added by G. Andr\\'e Oliva
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the formation and early evolution and fragmentation of an accretion disk around a forming massive protostar. We use a grid-based self-gravity-radiation-hydrodynamics code including a sub-grid module for stellar and dust evolution. On purpose, we do not use sink particles to allow for all paths of fragment formation and destruction, but instead keeping the spatial grid resolution high enough to properly resolve the physical length scales of the problem. We use a 3D grid in spherical coordinates with a logarithmic scaling in the radial direction and cosine scaling in the polar direction. Because of that, roughly 25% of the total number of grid cells, corresponding to $sim$ 26 million grid cells, are used to model the disk physics. They constitute the highest resolution simulations performed up to now on disk fragmentation around a forming massive star with the physics considered here. We study the convergence of our results by performing the same simulation for 5 different resolutions. We start from the collapse of a molecular cloud; a massive (proto)star is formed in its center, surrounded by a fragmenting Keplerian-like accretion disk with spiral arms. The fragments have masses of $sim 1 M_odot$, and their continuous interactions with the disk, spiral arms and other fragments results in eccentric orbits. Fragments form hydrostatic cores, surrounded by secondary disks with spiral arms that also produce new fragments. We identified several mechanisms of fragment formation, interaction and destruction. Central temperatures of the fragments can reach the hydrogen dissociation limit, form second Larson cores and evolve into companion stars. Based on this, we study the multiplicity predicted by the simulations and find $sim 6$ companions at different distances from the primary: from possible spectroscopic multiples, to companions at distances between 1000 and 2000 au.

rate research

Read More

Recent high-resolution simulations demonstrate that disks around primordial protostars easily fragment in the accretion phase before the protostars accrete less than a solar mass. To understand why the gravitational instability generally causes the fragmentation so early, we develop a one-dimensional (1D) non-steady model of the circumstellar disk that takes the mass supply from an accretion envelope into account. We also compare the model results to a three-dimensional (3D) numerical simulation performed with a code employing the adaptive mesh refinement. Our model shows that the self-gravitating disk, through which the Toomre $Q$ parameter is nearly constant at $Q sim 1$, gradually spreads as the disk is fed by the gas infalling from the envelope. We further find that the accretion rate onto the star is an order of magnitude smaller than the mass supply rate onto the disk. This discrepancy makes the disk more massive than the protostar in an early evolutionary stage. Most of the infalling gas is used to extend the outer part of the self-gravitating disk rather than transferred inward toward the star through the disk. We find that similar evolution also occurs in the 3D simulation, where the disk becomes three times more massive than the star before the first fragmentation occurs. Our 1D disk model well explains the evolution of the disk-to-star mass ratio observed in the simulation. We argue that the formation of such a massive disk leads to the early disk fragmentation.
72 - Ka Ho Lam 2019
Disks are essential to the formation of both stars and planets, but how they form in magnetized molecular cloud cores remains debated. This work focuses on how the disk formation is affected by turbulence and ambipolar diffusion (AD), both separately and in combination, with an emphasis on the protostellar mass accretion phase of star formation. We find that a relatively strong, sonic turbulence on the core scale strongly warps but does not completely disrupt the well-known magnetically-induced flattened pseudodisk that dominates the inner protostellar accretion flow in the laminar case, in agreement with previous work. The turbulence enables the formation of a relatively large disk at early times with or without ambipolar diffusion, but such a disk remains strongly magnetized and does not persist to the end of our simulation unless a relatively strong ambipolar diffusion is also present. The AD-enabled disks in laminar simulations tend to fragment gravitationally. The disk fragmentation is suppressed by initial turbulence. The ambipolar diffusion facilitates the disk formation and survival by reducing the field strength in the circumstellar region through magnetic flux redistribution and by making the field lines there less pinched azimuthally, especially at late times. We conclude that turbulence and ambipolar diffusion complement each other in promoting disk formation. The disks formed in our simulations inherit a rather strong magnetic field from its parental core, with a typical plasma-$beta$ of order a few tens or smaller, which is 2-3 orders of magnitude lower than the values commonly adopted in MHD simulations of protoplanetary disks. To resolve this potential tension, longer-term simulations of disk formation and evolution with increasingly more realistic physics are needed.
Context: Around 30 per cent of the observed exoplanets that orbit M dwarf stars are gas giants that are more massive than Jupiter. These planets are prime candidates for formation by disc instability. Aims: We want to determine the conditions for disc fragmentation around M dwarfs and the properties of the planets that are formed by disc instability. Methods: We performed hydrodynamic simulations of M dwarf protostellar discs in order to determine the minimum disc mass required for gravitational fragmentation to occur. Different stellar masses, disc radii, and metallicities were considered. The mass of each protostellar disc was steadily increased until the disc fragmented and a protoplanet was formed. Results: We find that a disc-to-star mass ratio between $sim 0.3$ and $sim 0.6$ is required for fragmentation to happen. The minimum mass at which a disc fragments increases with the stellar mass and the disc size. Metallicity does not significantly affect the minimum disc fragmentation mass but high metallicity may suppress fragmentation. Protoplanets form quickly (within a few thousand years) at distances around $sim50$ AU from the host star, and they are initially very hot; their centres have temperatures similar to the ones expected at the accretion shocks around planets formed by core accretion (up to 12,000K). The final properties of these planets (e.g. mass and orbital radius) are determined through long-term disc-planet or planet-planet interactions. Conclusions: Disc instability is a plausible way to form gas giant planets around M dwarfs provided that discs have at least 30% the mass of their host stars during the initial stages of their formation. Future observations of massive M dwarf discs or planets around very young M dwarfs are required to establish the importance of disc instability for planet formation around low-mass stars.
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
GW Ori is a hierarchical triple system which has a rare circumtriple disk. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.3 mm dust continuum and 12CO J=2-1 molecular gas emission of the disk. For the first time, we identify three dust rings in the disk at ~46, 188, and 338 AU, with estimated dust mass of ~70-250 Earth masses, respectively. To our knowledge, the outer ring in GW Ori is the largest dust ring ever found in protoplanetary disks. We use visibility modelling of dust continuum to show that the disk has misaligned parts and the innermost dust ring is eccentric. The disk misalignment is also suggested by the CO kinematics modelling. We interpret these substructures as evidence of ongoing dynamical interactions between the triple stars and the circumtriple disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا