No Arabic abstract
GW Ori is a hierarchical triple system which has a rare circumtriple disk. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.3 mm dust continuum and 12CO J=2-1 molecular gas emission of the disk. For the first time, we identify three dust rings in the disk at ~46, 188, and 338 AU, with estimated dust mass of ~70-250 Earth masses, respectively. To our knowledge, the outer ring in GW Ori is the largest dust ring ever found in protoplanetary disks. We use visibility modelling of dust continuum to show that the disk has misaligned parts and the innermost dust ring is eccentric. The disk misalignment is also suggested by the CO kinematics modelling. We interpret these substructures as evidence of ongoing dynamical interactions between the triple stars and the circumtriple disk.
We present spatially and spectrally resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of gas and dust orbiting the pre-main sequence hierarchical triple star system GW Ori. A forward-modeling of the ${}^{13}$CO and C${}^{18}$O $J$=2-1 transitions permits a measurement of the total stellar mass in this system, $5.29 pm 0.09,M_odot$, and the circum-triple disk inclination, $137.6 pm 2.0^circ$. Optical spectra spanning a 35 year period were used to derive new radial velocities and, coupled with a spectroscopic disentangling technique, revealed that the A and B components of GW Ori form a double-lined spectroscopic binary with a $241.50pm0.05$ day period; a tertiary companion orbits that inner pair with a $4218pm50$ day period. Combining the results from the ALMA data and the optical spectra with three epochs of astrometry in the literature, we constrain the individual stellar masses in the system ($M_mathrm{A} approx 2.7,M_odot$, $M_mathrm{B} approx 1.7,M_odot$, $M_mathrm{C} approx 0.9,M_odot$) and find strong evidence that at least one (and likely both) stellar orbital planes are misaligned with the disk plane by as much as $45^circ$. A $V$-band light curve spanning 30 years reveals several new $sim$30 day eclipse events 0.1-0.7~mag in depth and a 0.2 mag sinusoidal oscillation that is clearly phased with the AB-C orbital period. Taken together, these features suggest that the A-B pair may be partially obscured by material in the inner disk as the pair approaches apoastron in the hierarchical orbit. Lastly, we conclude that stellar evolutionary models are consistent with our measurements of the masses and basic photospheric properties if the GW Ori system is $sim$1 Myr old.
Complex organic molecules (COMs), which are the seeds of prebiotic material and precursors of amino acids and sugars, form in the icy mantles of circumstellar dust grains but cannot be detected remotely unless they are heated and released to the gas phase. Around solar-mass stars, water and COMs only sublimate in the inner few au of the disk, making them extremely difficult to spatially resolve and study. Sudden increases in the luminosity of the central star will quickly expand the sublimation front (so-called snow line) to larger radii, as seen previously in the FU Ori outburst of the young star V883 Ori. In this paper, we take advantage of the rapid increase in disk temperature of V883 Ori to detect and analyze five different COMs, methanol, acetone, acetonitrile, acetaldehyde, and methyl formate, in spatially-resolved submillimeter observations. The COMs abundances in V883 Ori is in reasonable agreement with cometary values. This result suggests that outbursting young stars can provide a special opportunity to study the ice composition of material directly related to planet formation.
We present sensitive and high angular resolution ($sim$0.2-0.3$$) (sub)millimeter (230 and 345 GHz) continuum and CO(2$-$1)/CO(3$-$2) line archive observations of the disk star system in UX Tauri carried out with ALMA (The Atacama Large Millimeter/Submillimeter Array). These observations reveal the gas and dusty disk surrounding the young star UX Tauri A with a large signal-to-noise ratio ($>$400 in the continuum and $>$50 in the line), and for the first time is detected the molecular gas emission associated with the disk of UX Tauri C (with a size for the disk of $<$56 au). No (sub)millimeter continuum emission is detected at 5$sigma$-level (0.2 mJy at 0.85 mm) associated with UX Tauri C. For the component UX Tauri C, we estimate a dust disk mass of $leq$ 0.05 M$_oplus$. Additionally, we report a strong tidal disk interaction between both disks UX Tauri A/C, separated 360 au in projected distance. The CO line observations reveal marked spiral arms in the disk of UX Tauri A and an extended redshifted stream of gas associated with the UX Tauri C disk. No spiral arms are observed in the dust continuum emission of UX Tauri A. Assuming a Keplerian rotation we estimate the enclosed masses (disk$+$star) from their radial velocities in 1.4 $pm$ 0.6 M$_odot$ for UX Tauri A, and 70 $pm$ 30 / $sin i$ Jupiter masses for UX Tauri C (the latter coincides with the mass upper limit value for a brown dwarf). The observational evidence presented here lead us to propose that UX Tauri C is having a close approach of a possible wide, evolving and eccentric orbit around the disk of UX Tauri A causing the formation of spiral arms and the stream of molecular gas falling towards UX Tauri C.
We report the detection of methanol in the disk around the young outbursting star V883 Ori with the Atacama Large Millimeter/submillimeter Array (ALMA). Four transitions are observed with upper level energies ranging between 115 and 459 K. The emission is spatially resolved with the 0.14 beam and follows the Keplerian rotation previously observed for C$^{18}$O. Using a rotational diagram analysis, we find a disk-averaged column density of $sim10^{17}$ cm$^{-2}$ and a rotational temperature of $sim90-100$ K, suggesting that the methanol has thermally desorbed from the dust grains. We derive outer radii between 120 and 140 AU for the different transitions, compared to the 360 AU outer radius for C$^{18}$O. Depending on the exact physical structure of the disk, the methanol emission could originate in the surface layers beyond the water snowline. Alternatively, the bulk of the methanol emission originates inside the water snowline, which can then be as far out as ~100 AU, instead of 42 AU as was previously inferred from the continuum opacity. In addition, these results show that outbursting young stars like V883 Ori are good sources to study the ice composition of planet forming material through thermally desorbed complex molecules, which have proven to be hard to observe in more evolved protoplanetary disks.
We investigate the formation and early evolution and fragmentation of an accretion disk around a forming massive protostar. We use a grid-based self-gravity-radiation-hydrodynamics code including a sub-grid module for stellar and dust evolution. On purpose, we do not use sink particles to allow for all paths of fragment formation and destruction, but instead keeping the spatial grid resolution high enough to properly resolve the physical length scales of the problem. We use a 3D grid in spherical coordinates with a logarithmic scaling in the radial direction and cosine scaling in the polar direction. Because of that, roughly 25% of the total number of grid cells, corresponding to $sim$ 26 million grid cells, are used to model the disk physics. They constitute the highest resolution simulations performed up to now on disk fragmentation around a forming massive star with the physics considered here. We study the convergence of our results by performing the same simulation for 5 different resolutions. We start from the collapse of a molecular cloud; a massive (proto)star is formed in its center, surrounded by a fragmenting Keplerian-like accretion disk with spiral arms. The fragments have masses of $sim 1 M_odot$, and their continuous interactions with the disk, spiral arms and other fragments results in eccentric orbits. Fragments form hydrostatic cores, surrounded by secondary disks with spiral arms that also produce new fragments. We identified several mechanisms of fragment formation, interaction and destruction. Central temperatures of the fragments can reach the hydrogen dissociation limit, form second Larson cores and evolve into companion stars. Based on this, we study the multiplicity predicted by the simulations and find $sim 6$ companions at different distances from the primary: from possible spectroscopic multiples, to companions at distances between 1000 and 2000 au.