Do you want to publish a course? Click here

Causal mediation analysis decomposition of between-hospital variance

68   0   0.0 ( 0 )
 Added by Olli Saarela
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Causal variance decompositions for a given disease-specific quality indicator can be used to quantify differences in performance between hospitals or health care providers. While variance decompositions can demonstrate variation in quality of care, causal mediation analysis can be used to study care pathways leading to the differences in performance between the institutions. This raises the question of whether the two approaches can be combined to decompose between-hospital variation in an outcome type indicator to that mediated through a given process (indirect effect) and remaining variation due to all other pathways (direct effect). For this purpose, we derive a causal mediation analysis decomposition of between-hospital variance, discuss its interpretation, and propose an estimation approach based on generalized linear mixed models for the outcome and the mediator. We study the performance of the estimators in a simulation study and demonstrate its use in administrative data on kidney cancer care in Ontario.



rate research

Read More

Greater understanding of the pathways through which an environmental mixture operates is important to design effective interventions. We present new methodology to estimate the natural direct effect (NDE), natural indirect effect (NIE), and controlled direct effects (CDEs) of a complex mixture exposure on an outcome through a mediator variable. We implement Bayesian Kernel Machine Regression (BKMR) to allow for all possible interactions and nonlinear effects of 1) the co-exposures on the mediator, 2) the co-exposures and mediator on the outcome, and 3) selected covariates on the mediator and/or outcome. From the posterior predictive distributions of the mediator and outcome, we simulate counterfactuals to obtain posterior samples, estimates, and credible intervals of the mediation effects. Our simulation study demonstrates that when the exposure-mediator and exposure-mediator-outcome relationships are complex, BKMR-Causal Mediation Analysis performs better than current mediation methods. We applied our methodology to quantify the contribution of birth length as a mediator between in utero co-exposure to arsenic, manganese and lead, and childrens neurodevelopmental scores, in a prospective birth cohort in Bangladesh. Among younger children, we found a negative association between the metal mixture and neurodevelopment. We also found evidence that birth length mediates the effect of exposure to the metal mixture on neurodevelopment for younger children. If birth length were fixed to its $75^{th}$ percentile value, the effect of the metal mixture on neurodevelopment decreases, suggesting that nutritional interventions to help increase birth length could potentially block the harmful effects of the metal mixture on neurodevelopment.
This paper proposes a new two-stage network mediation method based on the use of a latent network approach -- model-based eigenvalue decomposition -- for analyzing social network data with nodal covariates. In the decomposition stage of the observed network, no assumption on the metric of the latent space structure is required. In the mediation stage, the most important eigenvectors of a network are used as mediators. This method further offers an innovative way for controlling for the conditional covariates and it only considers the information left in the network. We demonstrate this approach in a detailed tutorial R code provided for four separate cases -- unconditional and conditional model-based eigenvalue decompositions for either a continuous outcome or a binary outcome -- to show its applicability to empirical network data.
Causal mediation analysis is a useful tool for epidemiological research, but it has been criticized for relying on a cross-world independence assumption that is empirically difficult to verify and problematic to justify based on background knowledge. In the present article we aim to assist the applied researcher in understanding this assumption. Synthesizing what is known about the cross-world independence assumption, we discuss the relationship between assumptions for causal mediation analyses, causal models, and non-parametric identification of natural direct and indirect effects. In particular we give a practical example of an applied setting where the cross-world independence assumption is violated even without any post-treatment confounding. Further, we review possible alternatives to the cross-world independence assumption, including the use of computation of bounds that avoid the assumption altogether. Finally, we carry out a numerical study in which the cross-world independence assumption is violated to assess the ensuing bias in estimating natural direct and indirect effects. We conclude with recommendations for carrying out causal mediation analyses.
Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by treatment. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the treatment and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether a treatment is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by treatment. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open source software implementing the proposed methodology.
288 - Kangjie Zhou , Jinzhu Jia 2021
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covariates need to be included in the propensity score function is important, since incorporating some unnecessary covariates may amplify both bias and variance of estimators of ATE. In this paper, we show that including additional instrumental variables that satisfy the exclusion restriction for outcome will do harm to the statistical efficiency. Also, we prove that, controlling for covariates that appear as outcome predictors, i.e. predict the outcomes and are irrelevant to the exposures, can help reduce the asymptotic variance of ATE estimation. We also note that, efficiently estimating the ATE by non-parametric or semi-parametric methods require the estimated propensity score function, as described in Hirano et al. (2003)cite{Hirano2003}. Such estimation procedure usually asks for many regularity conditions, Rothe (2016)cite{Rothe2016} also illustrated this point and proposed a known propensity score (KPS) estimator that requires mild regularity conditions and is still fully efficient. In addition, we introduce a linearly modified (LM) estimator that is nearly efficient in most general settings and need not estimation of the propensity score function, hence convenient to calculate. The construction of this estimator borrows idea from the interaction estimator of Lin (2013)cite{Lin2013}, in which regression adjustment with interaction terms are applied to deal with data arising from a completely randomized experiment. As its name suggests, the LM estimator can be viewed as a linear modification on the IPW estimator using known propensity scores. We will also investigate its statistical properties both analytically and numerically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا