Do you want to publish a course? Click here

Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH$_2$CN) in TMC-1

292   0   0.0 ( 0 )
 Added by Brett McGuire
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of the GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstellar medium at the earliest stages of star formation, following our earlier detection of benzonitrile ($c$-C$_6$H$_5$CN) in TMC-1. In this work, details of the observations, use of archival data, and data reduction strategies are provided. Using these observations, the interstellar detection of propargyl cyanide (HCCCH$_2$CN) is described, as well as the accompanying laboratory spectroscopy. We discuss these results, and the survey project as a whole, in the context of investigating a previously unexplored reservoir of complex, gas-phase molecules in pre-stellar sources. A series of companion papers describe other new astronomical detections and analyses.



rate research

Read More

We report the discovery of two unsaturated organic species, trans-(E)-cyanovinylacetylene and vinylcyanoacetylene, using the second data release of the GOTHAM deep survey towards TMC-1 with the 100 m Green Bank Telescope. For both detections, we performed velocity stacking and matched filter analyses using Markov chain Monte Carlo simulations, and for trans-(E)-cyanovinylacetylene, three rotational lines were observed at low signal-to-noise (${sim}$3$sigma$). From this analysis, we derive column densities of $2times10^{11}$ and $3times10^{11}$ cm$^{-2}$ for vinylcyanoacetylene and trans-(E)-cyanovinylacetylene, respectively, and an upper limit of $<2times10^{11}$ cm$^{-2}$ for trans-(Z)-cyanovinylacetylene. Comparisons with G3//B3LYP semi-empirical thermochemical calculations indicate abundances of the [H$_3$C$_5$N}] isomers are not consistent with their thermodynamic stability, and instead their abundances are mainly driven by dynamics. We provide discussion into how these species may be formed in TMC-1, with reference to related species like vinyl cyanide (CH$_2$=CHCN). As part of this discussion, we performed the same analysis for ethyl cyanide (CH$_3$CH$_2$CN), the hydrogenation product of CH$_2$=CHCN. This analysis provides evidence -- at 4.17$sigma$ significance -- an upper limit to the column density of $<4times10^{11}$ cm$^{-2}$; an order of magnitude lower than previous upper limits towards this source.
We report on the first detection of C3N- and C5N- towards the cold dark core TMC-1 in the Taurus region, using the Yebes 40 m telescope. The observed C3N/C3N- and C5N/C5N- abundance ratios are 140 and 2, respectively; that is similar to those found in the circumstellar envelope of the carbon-rich star IRC+10216. Although the formation mechanisms for the neutrals are different in interstellar (ion-neutral reactions) and circumstellar clouds (photodissociation and radical-neutral reactions), the similarity of the C3N/C3N- and C5N/C5N- abundance ratios strongly suggests a common chemical path for the formation of these anions in interstellar and circumstellar clouds. We discuss the role of radiative electronic attachment, reactions between N atoms and carbon chain anions Cn-, and that of H- reactions with HC3N and HC5N as possible routes to form CnN-. The detection of C5N- in TMC-1 gives strong support for assigning to this anion the lines found in IRC+10216, as it excludes the possibility of a metal-bearing species, or a vibrationally excited state. New sets of rotational parameters have been derived from the observed frequencies in TMC-1 and IRC+10216 for C5N- and the neutral radical C5N.
Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spectral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yields a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23 - 32 GHz. Through our MCMC analysis, we derive total column densities of $8.3times10^{11}$ and $1.9times10^{11}$ cm$^{-2}$ for 1- and 2-cyanocyclopentadiene respectively, corresponding to a ratio of 4.4(6) favoring the former. The derived abundance ratios point towards a common formation pathway - most likely being cyanation of cyclopentadiene by analogy to benzonitrile.
We report the first detection of C$_2$ $A^1Pi_u$--$X^1Sigma_g^+$ (0,0) and CN $A^2Pi_u$--$X^2Sigma^+$ (0,0) absorption bands in the interstellar medium. The detection was made using the near-infrared (0.91--1.35 $mu$m) high-resolution ($R=20,000$ and 68,000) spectra of Cygnus OB2 No.,12 collected with the WINERED spectrograph mounted on the 1.3 m Araki telescope. The $A$--$X$ (1,0) bands of C$_2$ and CN were detected simultaneously. These near-infrared bands have larger oscillator strengths, compared with the $A$--$X$ (2,0) bands of C$_2$ and CN in the optical. In the spectrum of the C$_2$ (0,0) band with $R=68,000$, three velocity components in the line of sight could be resolved and the lines were detected up to high rotational levels ($Jsim20$). By analyzing the rotational distribution of C$_2$, we could estimate the kinetic temperature and gas density of the clouds with high accuracy. Furthermore, we marginally detected weak lines of $^{12}$C$^{13}$C for the first time in the interstellar medium. Assuming that the rotational distribution and the oscillator strengths of the relevant transitions of $^{12}$C$_2$ and $^{12}$C$^{13}$C are the same, the carbon isotope ratio was estimated to be $^{12}text{C}/^{13}text{C}=50$--100, which is consistent with the ratio in the local interstellar medium. We also calculated the oscillator strength ratio of the C$_2$ (0,0) and (1,0) bands from the observed band strengths. Unfortunately, our result could not discern theoretical and experimental results because of the uncertainties. High-resolution data to resolve the velocity components will be necessary for both bands in order to put stronger constraints on the oscillator strength ratios.
We report the first detection in space of the single deuterated isotopologue of methylcyanoacetylene, CH$_2$DC$_3$N. A total of fifteen rotational transitions, with $J$ = 8-12 and $K_a$ = 0 and 1, were identified for this species in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telescope. The observed frequencies were used to derive for the first time the spectroscopic parameters of this deuterated isotopologue. We derive a column density of $(8.0pm 0.4) times 10^{10}$ cm$^{-2}$. The abundance ratio between CH$_3$C$_3$N and CH$_2$DC$_3$N is $sim$22. We also theoretically computed the principal spectroscopic constants of $^{13}$C isotopologues of CH$_3$C$_3$N and CH$_3$C$_4$H and those of the deuterated isotopologues of CH$_3$C$_4$H for which we could expect a similar degree of deuteration enhancement. However, we have not detected either CH$_2$DC$_4$H nor CH$_3$C$_4$D nor any $^{13}$C isotopologue. The different observed deuterium ratios in TMC-1 are reasonably accounted for by a gas phase chemical model where the low temperature conditions favor deuteron transfer through reactions with H$_2$D$^+$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا