Do you want to publish a course? Click here

Interstellar Detection of 2-Cyanocyclopentadiene, C$_5$H$_5$CN, a Second Five-Membered Ring Toward TMC-1

96   0   0.0 ( 0 )
 Added by Kin Long Kelvin Lee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spectral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yields a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23 - 32 GHz. Through our MCMC analysis, we derive total column densities of $8.3times10^{11}$ and $1.9times10^{11}$ cm$^{-2}$ for 1- and 2-cyanocyclopentadiene respectively, corresponding to a ratio of 4.4(6) favoring the former. The derived abundance ratios point towards a common formation pathway - most likely being cyanation of cyclopentadiene by analogy to benzonitrile.



rate research

Read More

Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory rotational spectroscopy and a sensitive spectral line survey in the radio band toward the starless cloud core TMC-1, we report the astronomical detection of 1-cyano-1,3-cyclopentadiene, $c$-C$_5$H$_5$CN}, a highly polar, cyano derivative of cyclopentadiene, $c$-C$_5$H$_6$. The derived abundance of $c$-C$_5$H$_5$CN} is far greater than predicted from astrochemical models which well reproduce the abundance of many carbon chains. This finding implies either an important production mechanism or a large reservoir of aromatic material may need to be considered. The apparent absence of its closely-related isomer, 2-cyano-1,3-cyclopentadiene, may arise from its lower stability or be indicative of a more selective pathway for formation of the 1-cyano isomer, perhaps one starting from acyclic precursors. The absence of N-heterocycles such as pyrrole and pyridine is discussed in light of the astronomical finding.
We report the first detection in space of the cumulene carbon chain $l$-H$_2$C$_5$. A total of eleven rotational transitions, with $J_{up}$ = 7-10 and $K_a$ = 0 and 1, were detected in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telescope. We derive a column density of (1.8$pm$0.5)$times$10$^{10}$ cm$^{-2}$. In addition, we report observations of other cumulene carbenes detected previously in TMC-1, to compare their abundances with the newly detected cumulene carbene chain. We find that $l$-H$_2$C$_5$ is $sim$4.0 times less abundant than the larger cumulene carbene $l$-H$_2$C$_6$, while it is $sim$300 and $sim$500 times less abundant than the shorter chains $l$-H$_2$C$_3$ and $l$-H$_2$C$_4$. We discuss the most likely gas-phase chemical routes to these cumulenes in TMC-1 and stress that chemical kinetics studies able to distinguish between different isomers are needed to shed light on the chemistry of C$_n$H$_2$ isomers with $n$,$>$,3.
The evidence for benzonitrile (C$_6$H$_5$CN}) in the starless cloud core TMC-1 makes high-resolution studies of other aromatic nitriles and their ring-chain derivatives especially timely. One such species is phenylpropiolonitrile (3-phenyl-2-propynenitrile, C$_6$H$_5$C$_3$N), whose spectroscopic characterization is reported here for the first time. The low resolution (0.5 cm$^{-1}$) vibrational spectrum of C$_6$H$_5$C$_3$N} has been recorded at far- and mid-infrared wavelengths (50 - 3500 cm$^{-1}$) using a Fourier Transform interferometer, allowing for the assignment of band centers of 14 fundamental vibrational bands. The pure rotational spectrum of the species has been investigated using a chirped-pulse Fourier transform microwave (FTMW) spectrometer (6 - 18 GHz), a cavity enhanced FTMW instrument (6 - 20 GHz), and a millimeter-wave one (75 - 100 GHz, 140 - 214 GHz). Through the assignment of more than 6200 lines, accurate ground state spectroscopic constants (rotational, centrifugal distortion up to octics, and nuclear quadrupole hyperfine constants) have been derived from our measurements, with a plausible prediction of the weaker bands through calculations. Interstellar searches for this highly polar species can now be undertaken with confidence since the astronomically most interesting radio lines have either been measured or can be calculated to very high accuracy below 300 GHz.
148 - M. Steglich , J. Fulara , S. Maity 2015
The $1 ^3Sigma_u^- leftarrow X^3Sigma_g^-$ transition of linear HC$_5$H (A) has been observed in a neon matrix and gas phase. The assignment is based on mass-selective experiments, extrapolation of previous results of the longer HC$_{2n+1}$H homologues, and density functional and multi-state CASPT2 theoretical methods. Another band system starting at 303 nm in neon is assigned as the $1 ^1 A_1 leftarrow X ^1 A_1$ transition of the cumulene carbene pentatetraenylidene H$_2$C$_5$ (B).
We report the first interstellar detection of DC$_7$N and six $^{13}$C-bearing isotopologues of HC$_7$N toward the dark cloud TMC-1 through observations with the Green Bank Telescope, and confirm the recent detection of HC$_5$$^{15}$N. For the average of the $^{13}$C isotopomers, DC$_7$N, and HC$_5$$^{15}$N, we derive column densities of 1.9(2)$times$10$^{11}$, 2.5(9)$times$10$^{11}$, and 1.5(4)$times$10$^{11}$ cm$^{-2}$, respectively. The resulting isotopic ratios are consistent with previous values derived from similar species in the source, and we discuss the implications for the formation chemistry of the observed cyanopolyynes. Within our uncertainties, no significant $^{13}$C isotopomer variation is found for HC$_7$N, limiting the significance CN could have in its production. The results further show that, for all observed isotopes, HC$_5$N may be isotopically depleted relative to HC$_3$N and HC$_7$N, suggesting that reactions starting from smaller cyanopolyynes may not be efficient to form HC$_{n}$N. This leads to the conclusion that the dominant production route may be the reaction between hydrocarbon ions and nitrogen atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا