No Arabic abstract
Dynamics of a particle diffusing in a confinement can be seen a sequence of bulk-diffusion-mediated hops on the confinement surface. Here, we investigate the surface hopping propagator that describes the position of the diffusing particle after a prescribed number of encounters with that surface. This quantity plays the central role in diffusion-influenced reactions and determines their most common characteristics such as the propagator, the first-passage time distribution, and the reaction rate. We derive explicit formulas for the surface hopping propagator and related quantities for several Euclidean domains: half-space, circular annuli, circular cylinders, and spherical shells. These results provide the theoretical ground for studying diffusion-mediated surface phenomena. The behavior of the surface hopping propagator is investigated for both immortal and mortal particles.
Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(001) surface, is presented and discussed within the classical context as well as within the framework of Kramers theory. Quantum corrections to the classical results are also analyzed and discussed.
We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis.
For many real physico-chemical complex systems detailed mechanism includes both reversible and irreversible reactions. Such systems are typical in homogeneous combustion and heterogeneous catalytic oxidation. Most complex enzyme reactions include irreversible steps. The classical thermodynamics has no limit for irreversible reactions whereas the kinetic equations may have such a limit. We represent the systems with irreversible reactions as the limits of the fully reversible systems when some of the equilibrium concentrations tend to zero. The structure of the limit reaction system crucially depends on the relative rates of this tendency to zero. We study the dynamics of the limit system and describe its limit behavior as $t to infty$. If the reversible systems obey the principle of detailed balance then the limit system with some irreversible reactions must satisfy the {em extended principle of detailed balance}. It is formulated and proven in the form of two conditions: (i) the reversible part satisfies the principle of detailed balance and (ii) the convex hull of the stoichiometric vectors of the irreversible reactions does not intersect the linear span of the stoichiometric vectors of the reversible reactions. These conditions imply the existence of the global Lyapunov functionals and alow an algebraic description of the limit behavior. The thermodynamic theory of the irreversible limit of reversible reactions is illustrated by the analysis of hydrogen combustion.
How much time does it take two molecules to react? If a reaction occurs upon contact, the answer to this question boils down to the classic first-passage time problem: find the random time it takes the two molecules to meet. However, this is not always the case as molecules switch stochastically between reactive and non-reactive states. In such cases, the reaction is said to be ``gated by the internal states of the molecules involved which could have a dramatic influence on kinetics. A unified, continuous-time, approach to gated reactions on networks was presented in [Phys. Rev. Lett. 127, 018301, 2021]. Here, we build on this recent advancement and develop an analogous discrete-time version of the theory. Similar to continuous-time, we employ a renewal approach to show that the gated reaction time can always be expressed in terms of the corresponding ungated first-passage and return times; which yields formulas for the generating function of the gated reaction-time distribution and its corresponding mean and variance. In cases where the mean reaction time diverges, we show that the long-time asymptotics of the gated problem is inherited from its ungated counterpart, where only the pre-factor of the power law tail changes. The discretization of time also gives rise to new phenomena that do not exist in the continuous-time analogue. Crucially, when the internal gating dynamics is in, or out of, phase with the spatial process governing molecular encounters resonance and anti-resonance phenomena emerge. These phenomena are illustrated using two case studies which also serve to show how the general approach presented herein greatly simplifies the analysis of gated reactions.
We study the impact of DNA coiling on the search rate of proteins moving along the DNA contour interspersed by three-dimensional (3D) bulk excursions. When the DNA is coiled proteins performing short 3D hops along a DNA segment can be captured by foreign DNA segments that have looped back close to the original segment. These intersegmental jumps are shown to enhance the search rate for a specific site on the DNA by lowering the tendency to resample previously visited sites on the DNA. The model developed here offers a quantitative description of recent single molecule experiments on facilitated diffusion of restriction enzymes EcoRV.