No Arabic abstract
In-app advertising closely relates to app revenue. Reckless ad integration could adversely impact app reliability and user experience, leading to loss of income. It is very challenging to balance the ad revenue and user experience for app developers. In this paper, we present a large-scale analysis on ad-related user feedback. The large user feedback data from App Store and Google Play allow us to summarize ad-related app issues comprehensively and thus provide practical ad integration strategies for developers. We first define common ad issues by manually labeling a statistically representative sample of ad-related feedback, and then build an automatic classifier to categorize ad-related feedback. We study the relations between different ad issues and user ratings to identify the ad issues poorly scored by users. We also explore the fix durations of ad issues across platforms for extracting insights into prioritizing ad issues for ad maintenance. We summarize 15 types of ad issues by manually annotating 903/36,309 ad-related user reviews. From a statistical analysis of 36,309 ad-related reviews, we find that users care most about the number of unique ads and ad display frequency during usage. Besides, users tend to give relatively lower ratings when they report the security and notification related issues. Regarding different platforms, we observe that the distributions of ad issues are significantly different between App Store and Google Play. Moreover, some ad issue types are addressed more quickly by developers than other ad issues. We believe the findings we discovered can benefit app developers towards balancing ad revenue and user experience while ensuring app reliability.
User experience of mobile apps is an essential ingredient that can influence the audience volumes and app revenue. To ensure good user experience and assist app development, several prior studies resort to analysis of app reviews, a type of app repository that directly reflects user opinions about the apps. Accurately responding to the app reviews is one of the ways to relieve user concerns and thus improve user experience. However, the response quality of the existing method relies on the pre-extracted features from other tools, including manually-labelled keywords and predicted review sentiment, which may hinder the generalizability and flexibility of the method. In this paper, we propose a novel end-to-end neural network approach, named CoRe, with the contextual knowledge naturally incorporated and without involving external tools. Specifically, CoRe integrates two types of contextual knowledge in the training corpus, including official app descriptions from app store and responses of the retrieved semantically similar reviews, for enhancing the relevance and accuracy of the generated review responses. Experiments on practical review data show that CoRe can outperform the state-of-the-art method by 11.53% in terms of BLEU-4, an accuracy metric that is widely used to evaluate text generation systems.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.
In this paper we present the first population-level, city-scale analysis of application usage on smartphones. Using deep packet inspection at the network operator level, we obtained a geo-tagged dataset with more than 6 million unique devices that launched more than 10,000 unique applications across the city of Shanghai over one week. We develop a technique that leverages transfer learning to predict which applications are most popular and estimate the whole usage distribution based on the Point of Interest (POI) information of that particular location. We demonstrate that our technique has an 83.0% hitrate in successfully identifying the top five popular applications, and a 0.15 RMSE when estimating usage with just 10% sampled sparse data. It outperforms by about 25.7% over the existing state-of-the-art approaches. Our findings pave the way for predicting which apps are relevant to a user given their current location, and which applications are popular where. The implications of our findings are broad: it enables a range of systems to benefit from such timely predictions, including operating systems, network operators, appstores, advertisers, and service providers.
With an increase of PhD students working in industry, there is a need to understand what factors are influencing supervision for industrial students. This paper aims at exploring the challenges and good approaches to supervision of industrial PhD students. Data was collected through semi-structured interviews of six PhD students and supervisors with experience in PhD studies at several organizations in the embedded software industry in Sweden. The data was anonymized and it was analyzed by means of thematic analysis. The results indicate that there are many challenges and opportunities to improve the supervision of industrial PhD students.
Large scale cloud services use Key Performance Indicators (KPIs) for tracking and monitoring performance. They usually have Service Level Objectives (SLOs) baked into the customer agreements which are tied to these KPIs. Dependency failures, code bugs, infrastructure failures, and other problems can cause performance regressions. It is critical to minimize the time and manual effort in diagnosing and triaging such issues to reduce customer impact. Large volume of logs and mixed type of attributes (categorical, continuous) in the logs makes diagnosis of regressions non-trivial. In this paper, we present the design, implementation and experience from building and deploying DeCaf, a system for automated diagnosis and triaging of KPI issues using service logs. It uses machine learning along with pattern mining to help service owners automatically root cause and triage performance issues. We present the learnings and results from case studies on two large scale cloud services in Microsoft where DeCaf successfully diagnosed 10 known and 31 unknown issues. DeCaf also automatically triages the identified issues by leveraging historical data. Our key insights are that for any such diagnosis tool to be effective in practice, it should a) scale to large volumes of service logs and attributes, b) support different types of KPIs and ranking functions, c) be integrated into the DevOps processes.