No Arabic abstract
Responsible indicators are crucial for research assessment and monitoring. Transparency and accuracy of indicators are required to make research assessment fair and ensure reproducibility. However, sometimes it is difficult to conduct or replicate studies based on indicators due to the lack of transparency in conceptualization and operationalization. In this paper, we review the different variants of the Probabilistic Affinity Index (PAI), considering both the conceptual and empirical underpinnings. We begin with a review of the historical development of the indicator and the different alternatives proposed. To demonstrate the utility of the indicator, we demonstrate the application of PAI to identifying preferred partners in scientific collaboration. A streamlined procedure is provided, to demonstrate the variations and appropriate calculations. We then compare the results of implementation for five specific countries involved in international scientific collaboration. Despite the different proposals on its calculation, we do not observe large differences between the PAI variants, particularly with respect to country size. As with any indicator, the selection of a particular variant is dependent on the research question. To facilitate appropriate use, we provide recommendations for the use of the indicator given specific contexts.
Inspired by the social and economic benefits of diversity, we analyze over 9 million papers and 6 million scientists to study the relationship between research impact and five classes of diversity: ethnicity, discipline, gender, affiliation, and academic age. Using randomized baseline models, we establish the presence of homophily in ethnicity, gender and affiliation. We then study the effect of diversity on scientific impact, as reflected in citations. Remarkably, of the classes considered, ethnic diversity had the strongest correlation with scientific impact. To further isolate the effects of ethnic diversity, we used randomized baseline models and again found a clear link between diversity and impact. To further support these findings, we use coarsened exact matching to compare the scientific impact of ethnically diverse papers and scientists with closely-matched control groups. Here, we find that ethnic diversity resulted in an impact gain of 10.63% for papers, and 47.67% for scientists.
Throughout history, a relatively small number of individuals have made a profound and lasting impact on science and society. Despite long-standing, multi-disciplinary interests in understanding careers of elite scientists, there have been limited attempts for a quantitative, career-level analysis. Here, we leverage a comprehensive dataset we assembled, allowing us to trace the entire career histories of nearly all Nobel laureates in physics, chemistry, and physiology or medicine over the past century. We find that, although Nobel laureates were energetic producers from the outset, producing works that garner unusually high impact, their careers before winning the prize follow relatively similar patterns as ordinary scientists, being characterized by hot streaks and increasing reliance on collaborations. We also uncovered notable variations along their careers, often associated with the Nobel prize, including shifting coauthorship structure in the prize-winning work, and a significant but temporary dip in the impact of work they produce after winning the Nobel. Together, these results document quantitative patterns governing the careers of scientific elites, offering an empirical basis for a deeper understanding of the hallmarks of exceptional careers in science.
Concepts in a certain domain of science are linked via intrinsic connections reflecting the structure of knowledge. To get a qualitative insight and a quantitative description of this structure, we perform empirical analysis and modeling of the network of scientific concepts in the domain of physics. To this end we use a collection of manuscripts submitted to the e-print repository arXiv and the vocabulary of scientific concepts collected via the ScienceWISE.info platform and construct a network of scientific concepts based on their co-occurrences in publications. The resulting complex network possesses a number of specific features (high node density, dissortativity, structural correlations, skewed node degree distribution) that can not be understood as a result of simple growth by several commonly used network models. We show that the model based on a simultaneous account of two factors, growth by blocks and preferential selection, gives an explanation of empirically observed properties of the concepts network.
Scientific collaboration is often not perfectly reciprocal. Scientifically strong countries/institutions/laboratories may help their less prominent partners with leading scholars, or finance, or other resources. What is interesting in such type of collaboration is that (1) it may be measured by bibliometrics and (2) it may shed more light on the scholarly level of both collaborating organizations themselves. In this sense measuring institutions in collaboration sometimes may tell more than attempts to assess them as stand-alone organizations. Evaluation of collaborative patterns was explained in detail, for example, by Glanzel (2001; 2003). Here we combine these methods with a new one, made available by separating the best journals from others on the same platform of Russian Index of Science Citation (RISC). Such sub-universes of journals from different leagues provide additional methods to study how collaboration influences the quality of papers published by organizations.
In the same way ecosystems tend to increase maturity by decreasing the flow of energy per unit biomass, we should move towards a more mature science by publishing less but high-quality papers and getting away from joining large teams in small roles. That is, we should decrease our scientific productivity for good.