No Arabic abstract
The Apollo-type near-Earth asteroid (155140) 2005 UD is thought to be a member of the Phaethon-Geminid meteor stream Complex (PGC). Its basic physical parameters are important for unveiling its origin and its relationship to the other PGC members as well as to the Geminid stream. Adopting the Lommel-Seeliger ellipsoid method and $H,G_1,G_2$ phase function, we carry out spin, shape, and phase curve inversion using the photometric data of 2005~UD. The data consists of 11 new lightcurves, 3 lightcurves downloaded from the Minor Planet Center, and 166 sparse data points downloaded from the Zwicky Transient Facility database. As a result, we derive the pole solution of ($285^circ.8^{+1.1}_{-5.3}$, $ -25^circ.8^{+5.3}_{-12.5}$) in the ecliptic frame of J2000.0 with the rotational period of $5.2340$ h. The corresponding triaxial shape (semiaxes $a>b>c$) is estimated as $b/a= 0.76^{+0.01}_{-0.01}$ and $c/a=0.40^{+0.03}_{-0.01}$. Using the calibrated photometric data of 2005 UD, the $H,G_1,G_2$ parameters are estimated as $17.19^{+0.10}_{-0.09}$ mag, $0.573^{+0.088}_{-0.069}$, and $0.004^{+0.020}_{-0.021}$, respectively. Correspondingly, the phase integral $q$, photometric phase coefficient $k$, and the enhancement factor $zeta$ are 0.2447, -1.9011, and 0.7344. From the values of $G_1$ and $G_2$, 2005 UD is likely to be a C-type asteroid. We estimate the equivalent diameter of 2005 UD from the new $H$-value: it is 1.30 km using the new geometric albedo of 0.14.
The relationship between the Near-Earth Objects (3200) Phaethon and (155140) 2005 UD is unclear. While both are parents to Meteor Showers, (the Geminids and Daytime Sextantids, respectively), have similar visible-wavelength reflectance spectra and orbits, dynamical investigations have failed to find any likely method to link the two objects in the recent past. Here we present the first near-infrared reflectance spectrum of 2005 UD, which shows it to be consistently linear and red-sloped unlike Phaethons very blue and concave spectrum. Searching for a process that could alter some common starting material to both of these end states, we hypothesized that the two objects had been heated to different extents, motivated by their near-Sun orbits, the composition of Geminid meteoroids, and previous models of Phaethons surface. We thus set about building a new laboratory apparatus to acquire reflectance spectra of meteoritic samples after heating to higher temperatures than available in the literature to test this hypothesis and were loaned a sample of the CI Chondrite Orgueil from the Vatican Meteorite Collection for testing. We find that while Phaethons spectrum shares many similarities with different CI Chondrites, 2005 UDs does not. We thus conclude that the most likely relationship between the two objects is that their similar properties are only by coincidence as opposed to a parent-fragment scenario, though the ultimate test will be when JAXAs DESTINY+ mission visits one or both objects later this decade. We also discuss possible paths forward to understanding Phaethons properties from dynamical and compositional grounds.
We conducted a polarimetric observation of the fast-rotating near-Earth asteroid (1566) Icarus at large phase (Sun-asteroid-observers) angles $alpha$= 57 deg--141deg around the 2015 summer solstice. We found that the maximum values of the linear polarization degree are $P_mathrm{max}$=7.32$pm$0.25 % at phase angles of $alpha_mathrm{max}$=124$pm$8 deg in the $V$-band and $P_mathrm{max}$=7.04$pm$0.21 % at $alpha_mathrm{max}$=124$pm$6 deg in the $R_mathrm{C}$-band. Applying the polarimetric slope-albedo empirical law, we derived a geometric albedo of $p_mathrm{V}$=0.25$pm$0.02, which is in agreement with that of Q-type taxonomic asteroids. $alpha_mathrm{max}$ is unambiguously larger than that of Mercury, the Moon, and another near-Earth S-type asteroid (4179) Toutatis but consistent with laboratory samples with hundreds of microns in size. The combination of the maximum polarization degree and the geometric albedo is in accordance with terrestrial rocks with a diameter of several hundreds of micrometers. The photometric function indicates a large macroscopic roughness. We hypothesize that the unique environment (i.e., the small perihelion distance $q$=0.187 au and a short rotational period of $T_mathrm{rot}$=2.27 hours) may be attributed to the paucity of small grains on the surface, as indicated on (3200) Phaethon.
We have used Minor Planet Center data and tools to explore the discovery circumstances and properties of the currently known population of over 10,000 NEAs, and to quantify the challenges for follow-up from ground-based telescopes. The increasing rate of discovery has grown to ~1,000/year as surveys have become more sensitive, by 1mag every ~7.5 years. However, discoveries of large (H =< 22) NEAs have remained stable at ~365/year over the past decade, at which rate the 2005 Congressional mandate to find 90% of 140m NEAs will not be met before 2030. Meanwhile, characterization is falling farther behind: Fewer than 10% of NEAs are well characterized in terms of size, rotation periods, and spectra, and at current rates of follow-up it will take about a century to determine them even for the known population. Over 60% of NEAs have an orbital uncertainty parameter, U >= 4, making reacquisition more than a year following discovery difficult; for H > 22 this fraction is over 90%. We argue that rapid follow-up will be essential to characterize newly-discovered NEAs. Most new NEAs are found within 0.5mag of peak brightness and fade quickly, typically by 0.5/3.5/5mag after 1/4/6 weeks. About 80% have synodic periods of <3 years that bring them close to Earth several times a decade. However, follow-up observations on subsequent apparitions will be near impossible for the bulk of new discoveries, as these will be H > 22 NEAs that tend to return 100 times fainter. We show that for characterization to keep pace with discovery would require: Visible spectroscopy within days with a dedicated >2m telescope; long-arc astrometry, used also for phase curves, with a >4m telescope; and fast-cadence (<min) lightcurves obtained within days with a >= 4m telescope. For the already-known large (H =< 22) NEAs, subsequent-apparition spectroscopy, astrometry, and photometry could be done with 1-2m telescopes.
We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {mu}m) of the Infrared Array Camera and detected the target within the 2{sigma} positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{sigma}). We find the asteroids most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.
The near-Earth object (NEO) population is a window into the original conditions of the protosolar nebula, and has the potential to provide a key pathway for the delivery of water and organics to the early Earth. In addition to delivering the crucial ingredients for life, NEOs can pose a serious hazard to humanity since they can impact the Earth. To properly quantify the impact risk, physical properties of the NEO population need to be studied. Unfortunately, NEOs have a great variation in terms of mitigation-relevant quantities (size, albedo, composition, etc.) and less than 15% of them have been characterized to date. There is an urgent need to undertake a comprehensive characterization of smaller NEOs (D<300m) given that there are many more of them than larger objects. One of the main aims of the NEOShield-2 project (2015--2017), financed by the European Community in the framework of the Horizon 2020 program, is therefore to retrieve physical properties of a wide number of NEOs in order to design impact mitigation missions and assess the consequences of an impact on Earth. We carried out visible photometry of NEOs, making use of the DOLORES instrument at the Telescopio Nazionale Galileo (TNG, La Palma, Spain) in order to derive visible color indexes and the taxonomic classification for each target in our sample. We attributed for the first time the taxonomical complex of 67 objects obtained during the first year of the project. While the majority of our sample belong to the S-complex, carbonaceous C-complex NEOs deserve particular attention. These NEOs can be located in orbits that are challenging from a mitigation point of view, with high inclination and low minimum orbit intersection distance (MOID). In addition, the lack of carbonaceous material we see in the small NEO population might not be due to an observational bias alone.