Do you want to publish a course? Click here

Physical Properties of Near-Earth Asteroid 2011 MD

123   0   0.0 ( 0 )
 Added by Michael Mommert
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {mu}m) of the Infrared Array Camera and detected the target within the 2{sigma} positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{sigma}). We find the asteroids most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.



rate research

Read More

An asteroid family is typically formed when a larger parent body undergoes a catastrophic collisional disruption, and as such family members are expected to show physical properties that closely trace the composition and mineralogical evolution of the parent. Recently a number of new datasets have been released that probe the physical properties of a large number of asteroids, many of which are members of identified families. We review these data sets and the composite properties of asteroid families derived from this plethora of new data. We also discuss the limitations of the current data, and the open questions in the field.
Aims. To derive the thermal inertia of 2008 EV$_5$, the baseline target for the Marco Polo-R mission proposal, and infer information about the size of the particles on its surface. Methods. Values of thermal inertia are obtained by fitting an asteroid thermophysical model to NASAs Wide-field Infrared Survey Explorer (WISE) infrared data. From the constrained thermal inertia and a model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles), grain size is derived. Results. We obtain an effective diameter $D = 370 pm 6,mathrm{m}$, geometric visible albedo $p_V = 0.13 pm 0.05$ (assuming $H=20.0 pm 0.4$), and thermal inertia $Gamma = 450 pm 60$ J/m2/s(1/2)/K at the 1-$sigma$ level of significance for its retrograde spin pole solution. The regolith particles radius is $r = 6.6^{+1.3}_{-1.3}$ mm for low degrees of compaction, and $r = 12.5^{+2.7}_{-2.6}$ mm for the highest packing densities.
We conducted a polarimetric observation of the fast-rotating near-Earth asteroid (1566) Icarus at large phase (Sun-asteroid-observers) angles $alpha$= 57 deg--141deg around the 2015 summer solstice. We found that the maximum values of the linear polarization degree are $P_mathrm{max}$=7.32$pm$0.25 % at phase angles of $alpha_mathrm{max}$=124$pm$8 deg in the $V$-band and $P_mathrm{max}$=7.04$pm$0.21 % at $alpha_mathrm{max}$=124$pm$6 deg in the $R_mathrm{C}$-band. Applying the polarimetric slope-albedo empirical law, we derived a geometric albedo of $p_mathrm{V}$=0.25$pm$0.02, which is in agreement with that of Q-type taxonomic asteroids. $alpha_mathrm{max}$ is unambiguously larger than that of Mercury, the Moon, and another near-Earth S-type asteroid (4179) Toutatis but consistent with laboratory samples with hundreds of microns in size. The combination of the maximum polarization degree and the geometric albedo is in accordance with terrestrial rocks with a diameter of several hundreds of micrometers. The photometric function indicates a large macroscopic roughness. We hypothesize that the unique environment (i.e., the small perihelion distance $q$=0.187 au and a short rotational period of $T_mathrm{rot}$=2.27 hours) may be attributed to the paucity of small grains on the surface, as indicated on (3200) Phaethon.
Small near-Earth asteroids (>20 meters) are interesting because they are progenitors for meteorites in our terrestrial collection. Crucial to our understanding of the effectiveness of our atmosphere in filtering low-strength impactors is the physical characteristics of these small near-Earth asteroids (NEAs). In the past, characterization of small NEAs has been a challenge because of the difficulty in detecting them prior to close Earth flyby. In this study we physically characterized the 2-meter diameter near-Earth asteroid 2015 TC25 using ground-based optical, near-infrared and radar assets during a close flyby of the Earth (distance 69,000 miles) in Oct. 2015. Our observations suggest that its surface composition is similar to aubrites, a rare class of high albedo differentiated meteorites. Aubrites make up only 0.14 % of all know meteorites in our terrestrial meteorite collection. 2015 TC25 is also a very fast rotator with a rotation period of 133 seconds. We compared spectral and dynamical properties of 2015 TC25 and found the best candidate source body in the inner main belt to be the 70-km diameter E-type asteroid (44) Nysa. We attribute difference in spectral slope between the two objects to the lack of regolith on the surface of 2015 TC25. Using the albedo of E-type asteroids (50-60%) we refine the diameter of 2015 TC25 to 2-meters making it one of the smallest NEA ever to be characterized.
In order to obtain the substantial information about the surface physics and thermal property of the target asteroid (162173) 1999 JU3, which will be visited by Hayabusa 2 in a sample return mission, with the Advanced Thermal Physical Model (ATPM) we estimate the possible thermal inertia distribution over its surface, and infer the major material composition of its surface materials. In addition, the effective diameter and geometric albedo are derived to be $D_{rm eff}=1.13pm0.03rm~km$, $p_{rm v}=0.042pm0.003$, respectively, and the average thermal inertia is estimated to be about $(300pm50)rm~Jcdot m^{-2}cdot s^{-0.5}cdot K^{-1}$. According to the derived thermal inertia distribution, we infer that the major area on the surface of the target asteroid may be covered by loose materials, such as rock debris, sands, and so on, but few bare rocks may exist in a very small region. In this sense, the sample return mission of Hayabusa 2 is feasible, when it is performed successfully, it will certainly bring significant scientific information to the research of asteroids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا