Do you want to publish a course? Click here

Large Contribution of Quasi-Acoustic Shear Phonon Modes to Thermal Conductivity in Novel Monolayer Ga2O3

130   0   0.0 ( 0 )
 Added by Gang Liu Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bulk gallium oxide (Ga2O3) has been widely used in lasers, dielectric coatings for solar cells, deep-ultraviolet transistor applications due to the large band gap over 4.5 eV. With the miniaturization of electronic devices, atomically thin Ga2O3 monolayer has been unveiled recently, which features an asymmetric configuration with a quintuple-layer atomic structure. The superior stability, the strain-tunable electronic properties, high carrier mobility and optical absorption indicate the promising applications in the electronic and photoelectronic devices. However, the strict investigation of lattice thermal conductivity (kappa_L) of 2D Ga2O3 is still lacking, which has impeded the widespread use in practical applications. Here, we report the computational discovery of low kappa_L with a value of 10.28 W m-1 K-1 at 300 K in atomically thin Ga2O3. Unexpectedly, two quasi-acoustic shear phonon modes contribute as high as 27% to the kappa_L at 300 K, leading to 37% contribution of optical phonon modes, much larger than many other 2D materials. We also find that the quasi-acoustic shear mode can emerge in the system without van der Waals interactions. This work provides new insight into the nature of thermal transport in non-van der Waals monolayer materials and predicts a new low kappa_L material of potential interest for thermal insulation in transistor applications.



rate research

Read More

Motivated by recent experimental findings, we study the contribution of a quantum critical optical phonon branch to the thermal conductivity of a paraelectric system. We consider the proximity of the optical phonon branch to transverse acoustic phonon branch and calculate its contribution to the thermal conductivity within the Kubo formalism. We find a low temperature power law dependence of the thermal conductivity as $T^{alpha}$, with $1 < alpha < 2$, (lower than $T^3$ behavior) due to optical phonons near the quantum critical point. This result is in accord with the experimental findings and indicates the importance of quantum fluctuations in the thermal conduction in these materials.
Recent studies reveal that four-phonon scattering is generally important in determining thermal conductivities of solids. However, these studies have been focused on materials where thermal conductivity $kappa$ is dominated by acoustic phonons, and the impact of four phonon scattering, although significant, is still generally smaller than three-phonon scattering. In this work, taking AlSb as example, we demonstrated that four-phonon scattering is even more critical to three-phonon scattering as it diminishes optical phonon thermal transport, and therefore significantly reduces the thermal conductivities of materials in which optical branches have long three-phonon lifetimes. Also, our calculations show that four-phonon scattering can play an extremely important role in weakening the isotope effect on $kappa$. Specifically, four-phonon scattering reduces the room-temperature $kappa$ of the isotopically pure and natural-occurring AlSb by 70$%$ and 50$%$, respectively. The reduction for isotopically pure and natural-occurring c-GaN is about 34$%$ and 27$%$, respectively. For isotopically-pure w-GaN, the reduction is about 13$%$ at room temperature and 25$%$ at 400 K. These results provided important guidance for experimentalists for achieving high thermal conductivities in III-V compounds for applications in semiconductor industry.
Low thermal conductivity is favorable for preserving the temperature gradient between the two ends of a thermoelectric material in order to ensure continuous electron current generation. In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic in PbTe and SnSe and phonon scattering resulting from the dynamic disorder in AgCrSe2 and CuCrSe2, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in {alpha}-MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the compounds intrinsic distorted rocksalt sublattice, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in {alpha}-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.
From next generation gas turbines to scavenging waste heat from car exhausts, finding new materials with ultra-low thermal conductivity ($kappa$) has the potential to lead to large gains in device efficiency. Crystal structures with inherently low $kappa$ are consequently desirable, but candidate materials are rare and often difficult to make. Using first principles calculations and inelastic neutron scattering we have studied the pyrochlore La$_2$Zr$_2$O$_7$ which has been proposed as a next generation thermal barrier. We find that there is a highly anharmonic, approximately flat, vibrational mode associated with the kagome planes. Our results suggest that this mode is responsible for the low thermal conductivity observed in the pyrochlores and that kagome compounds will be a fruitful place to search for other low $kappa$ materials.
102 - San-Dong Guo , Bang-Gui Liu 2017
Topological semimetal may have potential applications like topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated by first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). According to the calculated bulk modulus, shear modulus and $C_{44}$, TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 $mathrm{W m^{-1} K^{-1}}$ along a axis and 1080.40 $mathrm{W m^{-1} K^{-1}}$ along c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than one of other topological semimetal, such as TaAs, MoP and ZrTe, which is due to very longer phonon lifetimes for TaN than other topological semimetal. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibits the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Based on mass difference factor, the WC and WN can be regarded as potential candidates with ultrahigh lattice thermal conductivity. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonon with mean free path(MFP) larger than 20 (80) $mathrm{mu m}$ at 300 K has little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا