No Arabic abstract
We show that Projected Entangled-Pair States (PEPS) are able to describe critical, fermionic systems exhibiting both 1d and 0d Fermi surfaces on a 2d lattice. In the thermodynamic limit, the energy precision as a function of the bond dimension improves as a power law, illustrating that an arbitrary precision can be obtained by increasing the bond dimension in a controlled manner. We also identify a non-trivial obstruction in the Gaussian and fermionic variant of PEPS, rooted in its topology and restricting its efficient applicability to models with a matching parity configuration.
We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemist
This paper is a manual with tips and tricks for programming tensor network algorithms with global $SU(2)$ symmetry. We focus on practical details that are many times overlooked when it comes to implementing the basic building blocks of codes, such as useful data structures to store the tensors, practical ways of manipulating them, and so forth. Here we do not restrict ourselves to any specific tensor network method, but keep always in mind that the implementation should scale well for simulations of higher-dimensional systems using, e.g., Projected Entangled Pair States, where tensors with many indices may show up. To this end, the structural tensors (or intertwiners) that arise in the usual decomposition of $SU(2)$-symmetric tensors are never explicitly stored throughout the simulation. Instead, we store and manipulate the corresponding fusion trees - an algebraic specification of the symmetry constraints on the tensor - in order to implement basic $SU(2)$-symmetric tensor operations.
We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.
We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three dimensional system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.
We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regimes with local quantum criticality and marginal-Fermi liquid behavior. In the marginal Fermi liquid regime, the dc resistivity increases linearly with temperature over a broad range of temperatures. By generalizing the form of interactions, we also construct examples of non-Fermi liquids with critical Fermi-surfaces. The self energy has a singular frequency dependence, but lacks momentum dependence, reminiscent of a dynamical mean field theory-like behavior but in dimensions $d<infty$. In the low temperature and strong-coupling limit, a heavy Fermi liquid is formed. The critical Fermi-surface in the non-Fermi liquid regime gives rise to quantum oscillations in the magnetization as a function of an external magnetic field in the absence of quasiparticle excitations. We discuss the implications of these results for local quantum criticality and for fundamental bounds on relaxation rates. Drawing on the lessons from these models, we formulate conjectures on coarse grained descriptions of a class of intermediate scale non-fermi liquid behavior in generic correlated metals.