Do you want to publish a course? Click here

Renormalization group contraction of tensor networks in three dimensions

131   0   0.0 ( 0 )
 Added by Artur Garcia-Saez
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three dimensional system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.



rate research

Read More

124 - Glen Evenbly 2015
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical many-body system or the Euclidean path integral of a 1D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2D classical statistical and 1D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.
Tensor renormalization group (TRG) constitutes an important methodology for accurate simulations of strongly correlated lattice models. Facilitated by the automatic differentiation technique widely used in deep learning, we propose a uniform framework of differentiable TRG ($partial$TRG) that can be applied to improve various TRG methods, in an automatic fashion. Essentially, $partial$TRG systematically extends the concept of second renormalization [PRL 103, 160601 (2009)] where the tensor environment is computed recursively in the backward iteration, in the sense that given the forward process of TRG, $partial$TRG automatically finds the gradient through backpropagation, with which one can deeply train the tensor networks. We benchmark $partial$TRG in solving the square-lattice Ising model, and demonstrate its power by simulating one- and two-dimensional quantum systems at finite temperature. The deep optimization as well as GPU acceleration renders $partial$TRG manybody simulations with high efficiency and accuracy.
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimensions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through the canonical RG prescription, without explicitly using the conformal field theory. This approach is benchmarked in the context of the Ising models in 1D and 2D. Based on a pure RG argument, the proposed method has potential applications to 3D systems, where the existing bread-and-butter method is inapplicable.
We discuss compact (2+1)-dimensional Maxwell electrodynamics coupled to fermionic matter with N replica. For large enough N, the latter corresponds to an effective theory for the nearest neighbor SU(N) Heisenberg antiferromagnet, in which the fermions represent solitonic excitations known as spinons. Here we show that the spinons are deconfined for $N>N_c=36$, thus leading to an insulating state known as spin liquid. A previous analysis considerably underestimated the value of $N_c$. We show further that for $20<Nleq 36$ there can be either a confined or a deconfined phase, depending on the instanton density. For $Nleq 20$ only the confined phase exist. For the physically relevant value N=2 we argue that no paramagnetic phase can emerge, since chiral symmetry breaking would disrupt it. In such a case a spin liquid or any other nontrivial paramagnetic state (for instance, a valence-bond solid) is only possible if doping or frustrating interactions are included.
126 - Bryan OGorman 2019
We present a conceptually clear and algorithmically useful framework for parameterizing the costs of tensor network contraction. Our framework is completely general, applying to tensor networks with arbitrary bond dimensions, open legs, and hyperedges. The fundamental objects of our framework are rooted and unrooted contraction trees, which represent classes of contraction orders. Properties of a contraction tree correspond directly and precisely to the time and space costs of tensor network contraction. The properties of rooted contraction trees give the costs of parallelized contraction algorithms. We show how contraction trees relate to existing tree-like objects in the graph theory literature, bringing to bear a wide range of graph algorithms and tools to tensor network contraction. Independent of tensor networks, we show that the edge congestion of a graph is almost equal to the branchwidth of its line graph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا