Do you want to publish a course? Click here

An Economic Perspective on Predictive Maintenance of Filtration Units

210   0   0.0 ( 0 )
 Added by Tan Jing Yu Denis
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper provides an economic perspective on the predictive maintenance of filtration units. The rise of predictive maintenance is possible due to the growing trend of industry 4.0 and the availability of inexpensive sensors. However, the adoption rate for predictive maintenance by companies remains low. The majority of companies are sticking to corrective and preventive maintenance. This is not due to a lack of information on the technical implementation of predictive maintenance, with an abundance of research papers on state-of-the-art machine learning algorithms that can be used effectively. The main issue is that most upper management has not yet been fully convinced of the idea of predictive maintenance. The economic value of the implementation has to be linked to the predictive maintenance program for better justification by the management. In this study, three machine learning models were trained to demonstrate the economic value of predictive maintenance. Data was collected from a testbed located at the Singapore University of Technology and Design. The testbed closely resembles a real-world water treatment plant. A cost-benefit analysis coupled with Monte Carlo simulation was proposed. It provided a structured approach to document potential costs and savings by implementing a predictive maintenance program. The simulation incorporated real-world risk into a financial model. Financial figures were adapted from CITIC Envirotech Ltd, a leading membrane-based integrated environmental solutions provider. Two scenarios were used to elaborate on the economic values of predictive maintenance. Overall, this study seeks to bridge the gap between technical and business domains of predictive maintenance.



rate research

Read More

Log-based predictive maintenance of computing centers is a main concern regarding the worldwide computing grid that supports the CERN (European Organization for Nuclear Research) physics experiments. A log, as event-oriented adhoc information, is quite often given as unstructured big data. Log data processing is a time-consuming computational task. The goal is to grab essential information from a continuously changeable grid environment to construct a classification model. Evolving granular classifiers are suited to learn from time-varying log streams and, therefore, perform online classification of the severity of anomalies. We formulated a 4-class online anomaly classification problem, and employed time windows between landmarks and two granular computing methods, namely, Fuzzy-set-Based evolving Modeling (FBeM) and evolving Granular Neural Network (eGNN), to model and monitor logging activity rate. The results of classification are of utmost importance for predictive maintenance because priority can be given to specific time intervals in which the classifier indicates the existence of high or medium severity anomalies.
In aerospace and defense, training is being carried out on the web by viewing PowerPoint presentations, manuals and videos that are limited in their ability to convey information to the technician. Interactive training in the form of 3D is a more cost effective approach compared to creation of physical simulations and mockups. This paper demonstrates how training using interactive 3D simulations in elearning achieves a reduction in the time spent in training and improves the efficiency of a trainee performing the installation or removal.
New autonomous driving technologies are emerging every day and some of them have been commercially applied in the real world. While benefiting from these technologies, autonomous trucks are facing new challenges in short-term maintenance planning, which directly influences the truck operators profit. In this paper, we implement a vehicle health management system by addressing the maintenance planning issues of autonomous trucks on a transport mission. We also present a maintenance planning model using a risk-based decision-making method, which identifies the maintenance decision with minimal economic risk of the truck company. Both availability losses and maintenance costs are considered when evaluating the economic risk. We demonstrate the proposed model by numerical experiments illustrating real-world scenarios. In the experiments, compared to three baseline methods, the expected economic risk of the proposed method is reduced by up to $47%$. We also conduct sensitivity analyses of different model parameters. The analyses show that the economic risk significantly decreases when the estimation accuracy of remaining useful life, the maximal allowed time of delivery delay before order cancellation, or the number of workshops increases. The experiment results contribute to identifying future research and development attentions of autonomous trucks from an economic perspective.
Acute kidney injury (AKI) is a common and serious complication after a surgery which is associated with morbidity and mortality. The majority of existing perioperative AKI risk score prediction models are limited in their generalizability and do not fully utilize the physiological intraoperative time-series data. Thus, there is a need for intelligent, accurate, and robust systems, able to leverage information from large-scale data to predict patients risk of developing postoperative AKI. A retrospective single-center cohort of 2,911 adult patients who underwent surgery at the University of Florida Health has been used for this study. We used machine learning and statistical analysis techniques to develop perioperative models to predict the risk of AKI (risk during the first 3 days, 7 days, and until the discharge day) before and after the surgery. In particular, we examined the improvement in risk prediction by incorporating three intraoperative physiologic time series data, i.e., mean arterial blood pressure, minimum alveolar concentration, and heart rate. For an individual patient, the preoperative model produces a probabilistic AKI risk score, which will be enriched by integrating intraoperative statistical features through a machine learning stacking approach inside a random forest classifier. We compared the performance of our model based on the area under the receiver operating characteristics curve (AUROC), accuracy and net reclassification improvement (NRI). The predictive performance of the proposed model is better than the preoperative data only model. For AKI-7day outcome: The AUC was 0.86 (accuracy was 0.78) in the proposed model, while the preoperative AUC was 0.84 (accuracy 0.76). Furthermore, with the integration of intraoperative features, we were able to classify patients who were misclassified in the preoperative model.
With a new era of cloud and big data, Database Management Systems (DBMSs) have become more crucial in numerous enterprise business applications in all the industries. Accordingly, the importance of their proactive and preventive maintenance has also increased. However, detecting problems by predefined rules or stochastic modeling has limitations, particularly when analyzing the data on high-dimensional Key Performance Indicators (KPIs) from a DBMS. In recent years, Deep Learning (DL) has opened new opportunities for this complex analysis. In this paper, we present two complementary DL approaches to detect anomalies in SAP HANA. A temporal learning approach is used to detect abnormal patterns based on unlabeled historical data, whereas a spatial learning approach is used to classify known anomalies based on labeled data. We implement a system in SAP HANA integrated with Google TensorFlow. The experimental results with real-world data confirm the effectiveness of the system and models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا