Do you want to publish a course? Click here

The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement

82   0   0.0 ( 0 )
 Added by William Peebles
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing disentanglement methods for deep generative models rely on hand-picked priors and complex encoder-based architectures. In this paper, we propose the Hessian Penalty, a simple regularization term that encourages the Hessian of a generative model with respect to its input to be diagonal. We introduce a model-agnostic, unbiased stochastic approximation of this term based on Hutchinsons estimator to compute it efficiently during training. Our method can be applied to a wide range of deep generators with just a few lines of code. We show that training with the Hessian Penalty often causes axis-aligned disentanglement to emerge in latent space when applied to ProGAN on several datasets. Additionally, we use our regularization term to identify interpretable directions in BigGANs latent space in an unsupervised fashion. Finally, we provide empirical evidence that the Hessian Penalty encourages substantial shrinkage when applied to over-parameterized latent spaces.



rate research

Read More

We present MixNMatch, a conditional generative model that learns to disentangle and encode background, object pose, shape, and texture from real images with minimal supervision, for mix-and-match image generation. We build upon FineGAN, an unconditional generative model, to learn the desired disentanglement and image generator, and leverage adversarial joint image-code distribution matching to learn the latent factor encoders. MixNMatch requires bounding boxes during training to model background, but requires no other supervision. Through extensive experiments, we demonstrate MixNMatchs ability to accurately disentangle, encode, and combine multiple factors for mix-and-match image generation, including sketch2color, cartoon2img, and img2gif applications. Our code/models/demo can be found at https://github.com/Yuheng-Li/MixNMatch
The reconstruction of a discrete surface from a point cloud is a fundamental geometry processing problem that has been studied for decades, with many methods developed. We propose the use of a deep neural network as a geometric prior for surface reconstruction. Specifically, we overfit a neural network representing a local chart parameterization to part of an input point cloud using the Wasserstein distance as a measure of approximation. By jointly fitting many such networks to overlapping parts of the point cloud, while enforcing a consistency condition, we compute a manifold atlas. By sampling this atlas, we can produce a dense reconstruction of the surface approximating the input cloud. The entire procedure does not require any training data or explicit regularization, yet, we show that it is able to perform remarkably well: not introducing typical overfitting artifacts, and approximating sharp features closely at the same time. We experimentally show that this geometric prior produces good results for both man-made objects containing sharp features and smoother organic objects, as well as noisy inputs. We compare our method with a number of well-known reconstruction methods on a standard surface reconstruction benchmark.
This paper addresses mesh restoration problems, i.e., denoising and completion, by learning self-similarity in an unsupervised manner. For this purpose, the proposed method, which we refer to as Deep Mesh Prior, uses a graph convolutional network on meshes to learn the self-similarity. The network takes a single incomplete mesh as input data and directly outputs the reconstructed mesh without being trained using large-scale datasets. Our method does not use any intermediate representations such as an implicit field because the whole process works on a mesh. We demonstrate that our unsupervised method performs equally well or even better than the state-of-the-art methods using large-scale datasets.
Using only a model that was trained to predict where people look at images, and no additional training data, we can produce a range of powerful editing effects for reducing distraction in images. Given an image and a mask specifying the region to edit, we backpropagate through a state-of-the-art saliency model to parameterize a differentiable editing operator, such that the saliency within the masked region is reduced. We demonstrate several operators, including: a recoloring operator, which learns to apply a color transform that camouflages and blends distractors into their surroundings; a warping operator, which warps less salient image regions to cover distractors, gradually collapsing objects into themselves and effectively removing them (an effect akin to inpainting); a GAN operator, which uses a semantic prior to fully replace image regions with plausible, less salient alternatives. The resulting effects are consistent with cognitive research on the human visual system (e.g., since color mismatch is salient, the recoloring operator learns to harmonize objects colors with their surrounding to reduce their saliency), and, importantly, are all achieved solely through the guidance of the pretrained saliency model, with no additional supervision. We present results on a variety of natural images and conduct a perceptual study to evaluate and validate the changes in viewers eye-gaze between the original images and our edited results.
Content and style (C-S) disentanglement intends to decompose the underlying explanatory factors of objects into two independent subspaces. From the unsupervised disentanglement perspective, we rethink content and style and propose a formulation for unsupervised C-S disentanglement based on our assumption that different factors are of different importance and popularity for image reconstruction, which serves as a data bias. The corresponding model inductive bias is introduced by our proposed C-S disentanglement Module (C-S DisMo), which assigns different and independent roles to content and style when approximating the real data distributions. Specifically, each content embedding from the dataset, which encodes the most dominant factors for image reconstruction, is assumed to be sampled from a shared distribution across the dataset. The style embedding for a particular image, encoding the remaining factors, is used to customize the shared distribution through an affine transformation. The experiments on several popular datasets demonstrate that our method achieves the state-of-the-art unsupervised C-S disentanglement, which is comparable or even better than supervised methods. We verify the effectiveness of our method by downstream tasks: domain translation and single-view 3D reconstruction. Project page at https://github.com/xrenaa/CS-DisMo.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا