Do you want to publish a course? Click here

Stochastic Thermodynamics of Non-Linear Electronic Circuits: A Realistic Framework for Computing around kT

90   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a general formalism for the construction of thermodynamically consistent stochastic models of non-linear electronic circuits. The devices constituting the circuit can have arbitrary I-V curves and may include tunnel junctions, diodes, and MOS transistors in subthreshold operation, among others. We provide a full analysis of the stochastic non-equilibrium thermodynamics of these models, identifying the relevant thermodynamic potentials, characterizing the different contributions to the irreversible entropy production, and obtaining different fluctuation theorems. Our work provides a realistic framework to study thermodynamics of computing with electronic circuits. We demonstrate this point by constructing a stochastic model of a CMOS inverter. We find that a deterministic analysis is only compatible with the assumption of equilibrium fluctuations, and analyze how the non-equilibrium fluctuations induce deviations from its deterministic transfer function. Finally, building on the CMOS inverter, we propose a full-CMOS design for a probabilistic bit (or binary stochastic neuron) exploiting intrinsic noise.



rate research

Read More

112 - Holger Then , Andreas Engel 2008
Asking for the optimal protocol of an external control parameter that minimizes the mean work required to drive a nano-scale system from one equilibrium state to another in finite time, Schmiedl and Seifert ({it Phys. Rev. Lett.} {bf 98}, 108301 (2007)) found the Euler-Lagrange equation to be a non-local integro-differential equation of correlation functions. For two linear examples, we show how this integro-differential equation can be solved analytically. For non-linear physical systems we show how the optimal protocol can be found numerically and demonstrate that there may exist several distinct optimal protocols simultaneously, and we present optimal protocols that have one, two, and three jumps, respectively.
274 - Y. Malevergne 2001
Using a family of modified Weibull distributions, encompassing both sub-exponentials and super-exponentials, to parameterize the marginal distributions of asset returns and their natural multivariate generalizations, we give exact formulas for the tails and for the moments and cumulants of the distribution of returns of a portfolio make of arbitrary compositions of these assets. Using combinatorial and hypergeometric functions, we are in particular able to extend previous results to the case where the exponents of the Weibull distributions are different from asset to asset and in the presence of dependence between assets. We treat in details the problem of risk minimization using two different measures of risks (cumulants and value-at-risk) for a portfolio made of two assets and compare the theoretical predictions with direct empirical data. While good agreement is found, the remaining discrepancy between theory and data stems from the deviations from the Weibull parameterization for small returns. Our extended formulas enable us to determine analytically the conditions under which it is possible to ``have your cake and eat it too, i.e., to construct a portfolio with both larger return and smaller ``large risks.
66 - David H. Wolpert 2019
One of the major resource requirements of computers - ranging from biological cells to human brains to high-performance (engineered) computers - is the energy used to run them. Those costs of performing a computation have long been a focus of research in physics, going back to the early work of Landauer. One of the most prominent aspects of computers is that they are inherently nonequilibrium systems. However, the early research was done when nonequilibrium statistical physics was in its infancy, which meant the work was formulated in terms of equilibrium statistical physics. Since then there have been major breakthroughs in nonequilibrium statistical physics, which are allowing us to investigate the myriad aspects of the relationship between statistical physics and computation, extending well beyond the issue of how much work is required to erase a bit. In this paper I review some of this recent work on the `stochastic thermodynamics of computation. After reviewing the salient parts of information theory, computer science theory, and stochastic thermodynamics, I summarize what has been learned about the entropic costs of performing a broad range of computations, extending from bit erasure to loop-free circuits to logically reversible circuits to information ratchets to Turing machines. These results reveal new, challenging engineering problems for how to design computers to have minimal thermodynamic costs. They also allow us to start to combine computer science theory and stochastic thermodynamics at a foundational level, thereby expanding both.
124 - Yi-An Ma , Hong Qian 2015
We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic equation of state of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised house-keeping heat and we obtain an integral fluctuation theorem for the latter, valid for all Markovian stochastic dynamics. A previously reported formalism is obtained when the stationary probability distribution is symmetric for all variables that are odd under time reversal which restricts consideration of directional variables such as velocity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا