Do you want to publish a course? Click here

Limiting crossing numbers for geodesic drawings on the sphere

158   0   0.0 ( 0 )
 Added by Alexandra Wesolek
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce a model for random geodesic drawings of the complete bipartite graph $K_{n,n}$ on the unit sphere $mathbb{S}^2$ in $mathbb{R}^3$, where we select the vertices in each bipartite class of $K_{n,n}$ with respect to two non-degenerate probability measures on $mathbb{S}^2$. It has been proved recently that many such measures give drawings whose crossing number approximates the Zarankiewicz number (the conjectured crossing number of $K_{n,n}$). In this paper we consider the intersection graphs associated with such random drawings. We prove that for any probability measures, the resulting random intersection graphs form a convergent graph sequence in the sense of graph limits. The edge density of the limiting graphon turns out to be independent of the two measures as long as they are antipodally symmetric. However, it is shown that the triangle densities behave differently. We examine a specific random model, blow-ups of antipodal drawings $D$ of $K_{4,4}$, and show that the triangle density in the corresponding crossing graphon depends on the angles between the great circles containing the edges in $D$ and can attain any value in the interval $bigl(frac{83}{12288}, frac{128}{12288}bigr)$.



rate research

Read More

We consider straight line drawings of a planar graph $G$ with possible edge crossings. The emph{untangling problem} is to eliminate all edge crossings by moving as few vertices as possible to new positions. Let $fix(G)$ denote the maximum number of vertices that can be left fixed in the worst case. In the emph{allocation problem}, we are given a planar graph $G$ on $n$ vertices together with an $n$-point set $X$ in the plane and have to draw $G$ without edge crossings so that as many vertices as possible are located in $X$. Let $fit(G)$ denote the maximum number of points fitting this purpose in the worst case. As $fix(G)le fit(G)$, we are interested in upper bounds for the latter and lower bounds for the former parameter. For each $epsilon>0$, we construct an infinite sequence of graphs with $fit(G)=O(n^{sigma+epsilon})$, where $sigma<0.99$ is a known graph-theoretic constant, namely the shortness exponent for the class of cubic polyhedral graphs. To the best of our knowledge, this is the first example of graphs with $fit(G)=o(n)$. On the other hand, we prove that $fix(G)gesqrt{n/30}$ for all $G$ with tree-width at most 2. This extends the lower bound obtained by Goaoc et al. [Discrete and Computational Geometry 42:542-569 (2009)] for outerplanar graphs. Our upper bound for $fit(G)$ is based on the fact that the constructed graphs can have only few collinear vertices in any crossing-free drawing. To prove the lower bound for $fix(G)$, we show that graphs of tree-width 2 admit drawings that have large sets of collinear vertices with some additional special properties.
Research about crossings is typically about minimization. In this paper, we consider emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.
We study the question whether a crossing-free 3D morph between two straight-line drawings of an $n$-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with $O(log n)$ steps, while for the latter $Theta(n)$ steps are always sufficient and sometimes necessary.
A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of layered 1-bend drawings.
Symmetry is an important factor in human perception in general, as well as in the visualization of graphs in particular. There are three main types of symmetry: reflective, translational, and rotational. We report the results of a human subjects experiment to determine what types of symmetries are more salient in drawings of graphs. We found statistically significant evidence that vertical reflective symmetry is the most dominant (when selecting among vertical reflective, horizontal reflective, and translational). We also found statistically significant evidence that rotational symmetry is affected by the number of radial axes (the more, the better), with a notable exception at four axes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا