Do you want to publish a course? Click here

On collinear sets in straight line drawings

291   0   0.0 ( 0 )
 Added by Oleg Verbitsky
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We consider straight line drawings of a planar graph $G$ with possible edge crossings. The emph{untangling problem} is to eliminate all edge crossings by moving as few vertices as possible to new positions. Let $fix(G)$ denote the maximum number of vertices that can be left fixed in the worst case. In the emph{allocation problem}, we are given a planar graph $G$ on $n$ vertices together with an $n$-point set $X$ in the plane and have to draw $G$ without edge crossings so that as many vertices as possible are located in $X$. Let $fit(G)$ denote the maximum number of points fitting this purpose in the worst case. As $fix(G)le fit(G)$, we are interested in upper bounds for the latter and lower bounds for the former parameter. For each $epsilon>0$, we construct an infinite sequence of graphs with $fit(G)=O(n^{sigma+epsilon})$, where $sigma<0.99$ is a known graph-theoretic constant, namely the shortness exponent for the class of cubic polyhedral graphs. To the best of our knowledge, this is the first example of graphs with $fit(G)=o(n)$. On the other hand, we prove that $fix(G)gesqrt{n/30}$ for all $G$ with tree-width at most 2. This extends the lower bound obtained by Goaoc et al. [Discrete and Computational Geometry 42:542-569 (2009)] for outerplanar graphs. Our upper bound for $fit(G)$ is based on the fact that the constructed graphs can have only few collinear vertices in any crossing-free drawing. To prove the lower bound for $fix(G)$, we show that graphs of tree-width 2 admit drawings that have large sets of collinear vertices with some additional special properties.



rate research

Read More

Graph drawing addresses the problem of finding a layout of a graph that satisfies given aesthetic and understandability objectives. The most important objective in graph drawing is minimization of the number of crossings in the drawing, as the aesthetics and readability of graph drawings depend on the number of edge crossings. VLSI layouts with fewer crossings are more easily realizable and consequently cheaper. A straight-line drawing of a planar graph G of n vertices is a drawing of G such that each edge is drawn as a straight-line segment without edge crossings. However, a problem with current graph layout methods which are capable of producing satisfactory results for a wide range of graphs is that they often put an extremely high demand on computational resources. This paper introduces a new layout method, which nicely draws internally convex of planar graph that consumes only little computational resources and does not need any heavy duty preprocessing. Here, we use two methods: The first is self organizing map known from unsupervised neural networks which is known as (SOM) and the second method is Inverse Self Organized Map (ISOM).
K{a}rolyi, Pach, and T{o}th proved that every 2-edge-colored straight-line drawing of the complete graph contains a monochromatic plane spanning tree. It is open if this statement generalizes to other classes of drawings, specifically, to simple drawings of the complete graph. These are drawings where edges are represented by Jordan arcs, any two of which intersect at most once. We present two partial results towards such a generalization. First, we show that the statement holds for cylindrical simple drawings. (In a cylindrical drawing, all vertices are placed on two concentric circles and no edge crosses either circle.) Second, we introduce a relaxation of the problem in which the graph is $k$-edge-colored, and the target structure must be hypochromatic, that is, avoid (at least) one color class. In this setting, we show that every $lceil (n+5)/6rceil$-edge-colored monotone simple drawing of $K_n$ contains a hypochromatic plane spanning tree. (In a monotone drawing, every edge is represented as an $x$-monotone curve.)
Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $operatorname{rb-index}(S)$ denote the smallest size of a perfect rainbow polygon for a colored point set $S$, and let $operatorname{rb-index}(k)$ be the maximum of $operatorname{rb-index}(S)$ over all $k$-colored point sets in general position; that is, every $k$-colored point set $S$ has a perfect rainbow polygon with at most $operatorname{rb-index}(k)$ vertices. In this paper, we determine the values of $operatorname{rb-index}(k)$ up to $k=7$, which is the first case where $operatorname{rb-index}(k) eq k$, and we prove that for $kge 5$, [ frac{40lfloor (k-1)/2 rfloor -8}{19} %Birgit: leqoperatorname{rb-index}(k)leq 10 bigglfloorfrac{k}{7}biggrfloor + 11. ] Furthermore, for a $k$-colored set of $n$ points in the plane in general position, a perfect rainbow polygon with at most $10 lfloorfrac{k}{7}rfloor + 11$ vertices can be computed in $O(nlog n)$ time.
We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing.
We introduce a model for random geodesic drawings of the complete bipartite graph $K_{n,n}$ on the unit sphere $mathbb{S}^2$ in $mathbb{R}^3$, where we select the vertices in each bipartite class of $K_{n,n}$ with respect to two non-degenerate probability measures on $mathbb{S}^2$. It has been proved recently that many such measures give drawings whose crossing number approximates the Zarankiewicz number (the conjectured crossing number of $K_{n,n}$). In this paper we consider the intersection graphs associated with such random drawings. We prove that for any probability measures, the resulting random intersection graphs form a convergent graph sequence in the sense of graph limits. The edge density of the limiting graphon turns out to be independent of the two measures as long as they are antipodally symmetric. However, it is shown that the triangle densities behave differently. We examine a specific random model, blow-ups of antipodal drawings $D$ of $K_{4,4}$, and show that the triangle density in the corresponding crossing graphon depends on the angles between the great circles containing the edges in $D$ and can attain any value in the interval $bigl(frac{83}{12288}, frac{128}{12288}bigr)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا