Do you want to publish a course? Click here

Tearing Down the Memory Wall

198   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a vision for the Erudite architecture that redefines the compute and memory abstractions such that memory bandwidth and capacity become first-class citizens along with compute throughput. In this architecture, we envision coupling a high-density, massively parallel memory technology like Flash with programmable near-data accelerators, like the streaming multiprocessors in modern GPUs. Each accelerator has a local pool of storage-class memory that it can access at high throughput by initiating very large numbers of overlapping requests that help to tolerate long access latency. The accelerators can also communicate with each other and remote memory through a high-throughput low-latency interconnect. As a result, systems based on the Erudite architecture scale compute and memory bandwidth at the same rate, tearing down the notorious memory wall that has plagued computer architecture for generations. In this paper, we present the motivation, rationale, design, benefit, and research challenges for Erudite.



rate research

Read More

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PrIM, a benchmark suite of 16 workloads from different application domains (e.g., linear algebra, databases, graph processing, neural networks, bioinformatics).
Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.
Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through IBM OCAPI (Open Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 5.3x and 12.7x when running two different compound stencil kernels. NERO reduces the energy consumption by 12x and 35x for the same two kernels over the POWER9 system with an energy efficiency of 1.61 GFLOPS/Watt and 21.01 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.
75 - Gang Li , Zejian Liu , Fanrong Li 2021
Deep convolutional neural networks have achieved remarkable progress in recent years. However, the large volume of intermediate results generated during inference poses a significant challenge to the accelerator design for resource-constraint FPGA. Due to the limited on-chip storage, partial results of intermediate layers are frequently transferred back and forth between on-chip memory and off-chip DRAM, leading to a non-negligible increase in latency and energy consumption. In this paper, we propose block convolution, a hardware-friendly, simple, yet efficient convolution operation that can completely avoid the off-chip transfer of intermediate feature maps at run-time. The fundamental idea of block convolution is to eliminate the dependency of feature map tiles in the spatial dimension when spatial tiling is used, which is realized by splitting a feature map into independent blocks so that convolution can be performed separately on individual blocks. We conduct extensive experiments to demonstrate the efficacy of the proposed block convolution on both the algorithm side and the hardware side. Specifically, we evaluate block convolution on 1) VGG-16, ResNet-18, ResNet-50, and MobileNet-V1 for ImageNet classification task; 2) SSD, FPN for COCO object detection task, and 3) VDSR for Set5 single image super-resolution task. Experimental results demonstrate that comparable or higher accuracy can be achieved with block convolution. We also showcase two CNN accelerators via algorithm/hardware co-design based on block convolution on memory-limited FPGAs, and evaluation shows that both accelerators substantially outperform the baseline without off-chip transfer of intermediate feature maps.
Simple graph algorithms such as PageRank have recently been the target of numerous hardware accelerators. Yet, there also exist much more complex graph mining algorithms for problems such as clustering or maximal clique listing. These algorithms are memory-bound and thus could be accelerated by hardware techniques such as Processing-in-Memory (PIM). However, they also come with non-straightforward parallelism and complicated memory access patterns. In this work, we address this with a simple yet surprisingly powerful observation: operations on sets of vertices, such as intersection or union, form a large part of many complex graph mining algorithms, and can offer rich and simple parallelism at multiple levels. This observation drives our cross-layer design, in which we (1) expose set operations using a novel programming paradigm, (2) express and execute these operations efficiently with carefully designed set-centric ISA extensions called SISA, and (3) use PIM to accelerate SISA instructions. The key design idea is to alleviate the bandwidth needs of SISA instructions by mapping set operations to two types of PIM: in-DRAM bulk bitwise computing for bitvectors representing high-degree vertices, and near-memory logic layers for integer arrays representing low-degree vertices. Set-centric SISA-enhanced algorithms are efficient and outperform hand-tuned baselines, offering more than 10x speedup over the established Bron-Kerbosch algorithm for listing maximal cliques. We deliver more than 10 SISA set-centric algorithm formulations, illustrating SISAs wide applicability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا