Do you want to publish a course? Click here

An automated pipeline for the discovery of conspiracy and conspiracy theory narrative frameworks: Bridgegate, Pizzagate and storytelling on the web

84   0   0.0 ( 0 )
 Added by Shadi Shahsavari
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Although a great deal of attention has been paid to how conspiracy theories circulate on social media and their factual counterpart conspiracies, there has been little computational work done on describing their narrative structures. We present an automated pipeline for the discovery and description of the generative narrative frameworks of conspiracy theories on social media, and actual conspiracies reported in the news media. We base this work on two separate repositories of posts and news articles describing the well-known conspiracy theory Pizzagate from 2016, and the New Jersey conspiracy Bridgegate from 2013. We formulate a graphical generative machine learning model where nodes represent actors/actants, and multi-edges and self-loops among nodes capture context-specific relationships. Posts and news items are viewed as samples of subgraphs of the hidden narrative network. The problem of reconstructing the underlying structure is posed as a latent model estimation problem. We automatically extract and aggregate the actants and their relationships from the posts and articles. We capture context specific actants and interactant relationships by developing a system of supernodes and subnodes. We use these to construct a network, which constitutes the underlying narrative framework. We show how the Pizzagate framework relies on the conspiracy theorists interpretation of hidden knowledge to link otherwise unlinked domains of human interaction, and hypothesize that this multi-domain focus is an important feature of conspiracy theories. While Pizzagate relies on the alignment of multiple domains, Bridgegate remains firmly rooted in the single domain of New Jersey politics. We hypothesize that the narrative framework of a conspiracy theory might stabilize quickly in contrast to the narrative framework of an actual one, which may develop more slowly as revelations come to light.



rate research

Read More

Rumors and conspiracy theories thrive in environments of low confidence and low trust. Consequently, it is not surprising that ones related to the Covid-19 pandemic are proliferating given the lack of any authoritative scientific consensus on the virus, its spread and containment, or on the long term social and economic ramifications of the pandemic. Among the stories currently circulating are ones suggesting that the 5G network activates the virus, that the pandemic is a hoax perpetrated by a global cabal, that the virus is a bio-weapon released deliberately by the Chinese, or that Bill Gates is using it as cover to launch a global surveillance regime. While some may be quick to dismiss these stories as having little impact on real-world behavior, recent events including the destruction of property, racially fueled attacks against Asian Americans, and demonstrations espousing resistance to public health orders countermand such conclusions. Inspired by narrative theory, we crawl social media sites and news reports and, through the application of automated machine-learning methods, discover the underlying narrative frameworks supporting the generation of these stories. We show how the various narrative frameworks fueling rumors and conspiracy theories rely on the alignment of otherwise disparate domains of knowledge, and consider how they attach to the broader reporting on the pandemic. These alignments and attachments, which can be monitored in near real-time, may be useful for identifying areas in the news that are particularly vulnerable to reinterpretation by conspiracy theorists. Understanding the dynamics of storytelling on social media and the narrative frameworks that provide the generative basis for these stories may also be helpful for devising methods to disrupt their spread.
QAnon is a far-right conspiracy theory that became popular and mainstream over the past few years. Worryingly, the QAnon conspiracy theory has implications in the real world, with supporters of the theory participating in real-world violent acts like the US capitol attack in 2021. At the same time, the QAnon theory started evolving into a global phenomenon by attracting followers across the globe and, in particular, in Europe. Therefore, it is imperative to understand how the QAnon theory became a worldwide phenomenon and how this dissemination has been happening in the online space. This paper performs a large-scale data analysis of QAnon through Telegram by collecting 4.5M messages posted in 161 QAnon groups/channels. Using Googles Perspective API, we analyze the toxicity of QAnon content across languages and over time. Also, using a BERT-based topic modeling approach, we analyze the QAnon discourse across multiple languages. Among other things, we find that the German language is prevalent in QAnon groups/channels on Telegram, even overshadowing English after 2020. Also, we find that content posted in German and Portuguese tends to be more toxic compared to English. Our topic modeling indicates that QAnon supporters discuss various topics of interest within far-right movements, including world politics, conspiracy theories, COVID-19, and the anti-vaccination movement. Taken all together, we perform the first multilingual study on QAnon through Telegram and paint a nuanced overview of the globalization of the QAnon theory.
Parents - particularly moms - increasingly consult social media for support when taking decisions about their young children, and likely also when advising other family members such as elderly relatives. Minimizing malignant online influences is therefore crucial to securing their assent for policies ranging from vaccinations, masks and social distancing against the pandemic, to household best practices against climate change, to acceptance of future 5G towers nearby. Here we show how a strengthening of bonds across online communities during the pandemic, has led to non-Covid-19 conspiracy theories (e.g. fluoride, chemtrails, 5G) attaining heightened access to mainstream parent communities. Alternative health communities act as the critical conduits between conspiracy theorists and parents, and make the narratives more palatable to the latter. We demonstrate experimentally that these inter-community bonds can perpetually generate new misinformation, irrespective of any changes in factual information. Our findings show explicitly why Facebooks current policies have failed to stop the mainstreaming of non-Covid-19 and Covid-19 conspiracy theories and misinformation, and why targeting the largest communities will not work. A simple yet exactly solvable and empirically grounded mathematical model, shows how modest tailoring of mainstream communities couplings could prevent them from tipping against establishment guidance. Our conclusions should also apply to other social media platforms and topics.
Computational visual storytelling produces a textual description of events and interpretations depicted in a sequence of images. These texts are made possible by advances and cross-disciplinary approaches in natural language processing, generation, and computer vision. We define a computational creative visual storytelling as one with the ability to alter the telling of a story along three aspects: to speak about different environments, to produce variations based on narrative goals, and to adapt the narrative to the audience. These aspects of creative storytelling and their effect on the narrative have yet to be explored in visual storytelling. This paper presents a pipeline of task-modules, Object Identification, Single-Image Inferencing, and Multi-Image Narration, that serve as a preliminary design for building a creative visual storyteller. We have piloted this design for a sequence of images in an annotation task. We present and analyze the collected corpus and describe plans towards automation.
99 - Maxim Yu. Khlopov 2019
The lack of experimental evidence at the LHC for physics beyond the Standard model (BSM) of elementary particles together with necessity of its existence to provide solutions of internal problems of the Standard model (SM) as well as of physical nature of the basic elements of the modern cosmology demonstrates the conspiracy of BSM physics. Simultaneously the data of precision cosmology only tighten the constraints on the deviations from the now standard LambdaCDM model and thus exhibit conspiracy of the nonstandard cosmological scenarios. We show that studying new physics in combination of its physical, astrophysical and cosmological probes, can not only unveil the conspiracy of BSM physics but will also inevitably reveal nonstandard features in the cosmological scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا