Do you want to publish a course? Click here

Real and imaginary edge states in stacked Floquet honeycomb lattices

77   0   0.0 ( 0 )
 Added by Holger Fehske
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a non-Hermitian Floquet model with topological edge states in real and imaginary band gaps. The model utilizes two stacked honeycomb lattices which can be related via four different types of non-Hermitian time-reversal symmetry. Implementing the correct time-reversal symmetry provides us with either two counterpropagating edge states in a real gap, or a single edge state in an imaginary gap. The counterpropagating edge states allow for either helical or chiral transport along the lattice perimeter. In stark contrast, we find that the edge state in the imaginary gap does not propagate. Instead, it remains spatially localized while its amplitude continuously increases. Our model is well-suited for realizing these edge states in photonic waveguide lattices.



rate research

Read More

The experimental study of edge states in atomically-thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds and the need to measure local properties. In the case of graphene, localised edge modes have been predicted in zig-zag and bearded edges, characterised by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the {pi} and {pi}* bands of graphene. We show the momentum space dispersion of the edge states associated to the zig-zag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarisation effects characteristic of polaritons on the properties of these states.
We report on the effect of laser illumination with circularly polarized light on the electronic structure of AB-stacked graphite samples. By using Floquet theory in combination with Greens function techniques, we find that the polarized light induces band-gap openings at the Floquet zone edge $hbarOmega/2$, bridged by chiral boundary states. These states propagate mainly along the borders of the constituting layers as evidenced by the time-averaged local density of states and the probability current density in several geometries. Semianalytic calculations of the Chern number suggest that these states are of topological nature, similar to those found in illuminated 2D samples like monolayer and bilayer graphene. These states are promising candidates for the realization of a three-dimensional version of the quantum Hall effect for Floquet systems.
118 - O. Jamadi , E. Rozas , G. Salerno 2020
We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n=0 and n=1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton-polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.
Topological phases of matter have attracted much attention over the years. Motivated by analogy with photonic lattices, here we examine the edge states of a one-dimensional trimer lattice in the phases with and without inversion symmetry protection. In contrast to the Su-Schrieffer-Heeger model, we show that the edge states in the inversion-symmetry broken phase of the trimer model turn out to be chiral, i.e., instead of appearing in pairs localized at opposite edges they can appear at a $textit{single}$ edge. Interestingly, these chiral edge states remain robust to large amounts of disorder. In addition, we use the Zak phase to characterize the emergence of degenerate edge states in the inversion-symmetric phase of the trimer model. Furthermore, we capture the essentials of the whole family of trimers through a mapping onto the commensurate off-diagonal Aubry-Andre-Harper model, which allow us to establish a direct connection between chiral edge modes in the two models, including the calculation of Chern numbers. We thus suggest that the chiral edge modes of the trimer lattice have a topological origin inherited from this effective mapping. Also, we find a nontrivial connection between the topological phase transition point in the trimer lattice and the one in its associated two-dimensional parent system, in agreement with results in the context of Thouless pumping in photonic lattices.
Magnetic chains on superconducting systems have emerged as a platform for realization of Majorana bound states (MBSs) in condensed matter systems with possible applications to topological quantum computation. In this work we study the MBSs formed in magnetic chains on two-dimensional honeycomb materials with induced superconductivity. We establish phase diagrams showing the topological regions (where MBSs appear), which are strongly dependent on the spiral angle along the chain of the magnetic moments. In particular, find large regions where the topological phase is robust even at large values of the local Zeeman field, thus producing topological regions without an upper bound. Moreover, we show that the energy oscillations of the MBSs can show very different behavior with magnetic field strength. In some parameter regimes we find increasing oscillations amplitudes and decreasing periods, while in the other regimes the complete opposite behavior is found with increasing magnetic field strength. We also find that the topological phase can become dependent on the chain length, particularly in topological regions with a very high or no upper bound. In these systems we see a very smooth evolution from MBSs localized at chain end points to in-gap Andreev bound states spread over the full chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا