We introduce two non-homogeneous processes: a fractional non-homogeneous Poisson process of order $k$ and and a fractional non-homogeneous Polya-Aeppli process of order $k$. We characterize these processes by deriving their non-local governing equations. We further study the covariance structure of the processes and investigate the long-range dependence property.
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing equation. We further compute the first and second moments of the process. Eventually, we derive the distribution of arrival times. Constant reference is made to previous known results in the homogeneous case and to how they can be derived from the specialization of the non-homogeneous process.
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson process. We give both finite-dimensional and functional limit theorems for the fractional non-homogeneous Poisson process and the fractional compound Poisson process. The results are derived by using martingale methods, regular variation properties and Anscombes theorem. Eventually, some of the limit results are verified in a Monte Carlo simulation.
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fill the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence to a centered Normal distribution. We talk about non-central moderate deviations when the weak convergence is towards a non-Gaussian distribution. In this paper we study non-central moderate deviations for compound fractional Poisson processes with light-tailed jumps.
The order-$k$ Voronoi tessellation of a locally finite set $X subseteq mathbb{R}^n$ decomposes $mathbb{R}^n$ into convex domains whose points have the same $k$ nearest neighbors in $X$. Assuming $X$ is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the $k$ nearest points in $X$ are within a given distance threshold.
We introduce and study a fractional version of the Skellam process of order $k$ by time-changing it with an independent inverse stable subordinator. We call it the fractional Skellam process of order $k$ (FSPoK). An integral representation for its one-dimensional distributions and their governing system of fractional differential equations are obtained. We derive the probability generating function, mean, variance and covariance of the FSPoK which are utilized to establish its long-range dependence property. Later, we considered two time-chang