Do you want to publish a course? Click here

The Synchrotron Polarization in Decaying Magnetic Field in Gamma-Ray Bursts

85   0   0.0 ( 0 )
 Added by Kangfa Cheng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polarization can serve as a probe of the radiation mechanism and magnetic field (MF) configuration in gamma-ray bursts (GRBs). In the case of constant MF, the synchrotron polarization in the prompt phase of GRBs has been widely studied. In this paper, we consider the case of the decaying MF. We calculate the time-averaged and instantaneous synchrotron polarizations in a pulse for different viewing angles and for the large-scale decaying MF model, which can explain the so-called Band spectrum. We find that the on-axis time-averaged polarization degree (PD) in the energy band of 50-500 keV for the decaying large-scale MF model ($sim 0.6$ for typical parameters) is higher than that in the constant MF model ($sim 0.5$). An interesting result is the instantaneous PD in the off-axis case will experience a turnover, i.e., the PD will evolve from a positive value to a negative one. This suggests the polarization angle (PA) change by an angle of $90^circ$. Such a result is roughly consistent with the discovery of the PA evolution within a pulse in some bursts, such as GRB 170114A and GRB 160821A. Our result implies at least a part of bursts (off-axis bursts) should have the PA evolution in a pulse.



rate research

Read More

158 - X. H. Zhao , Z. Li , X. W. Liu 2013
In the internal shock model for gamma-ray bursts (GRBs), the synchrotron spectrum from the fast cooling electrons in a homogeneous downstream magnetic field (MF) is too soft to produce the low-energy slope of GRB spectra. However the magnetic field may decay downstream with distance from the shock front. Here we show that the synchrotron spectrum becomes harder if electrons undergo synchrotron and inverse-Compton cooling in a decaying MF. To reconcile this with the typical GRB spectrum with low energy slope $ u F_ upropto u$, it is required that the postshock MF decay time is comparable to the cooling time of the bulk electrons (corresponding to a MF decaying length typically of $sim10^5$ skin depths); that the inverse-Compton cooling should dominate synchrotron cooling after the MF decay time; and/or that the MF decays with comoving time roughly as $Bpropto t^{-1.5}$. An internal shock synchrotron model with a decaying MF can account for the majority of GRBs with low energy slopes not harder than $ u^{4/3}$.
We study the ensemble of linear polarization measurement in the optical afterglows of long-duration gamma-ray bursts. We assume a non sideways-expanding top-hat jet geometry and use the relatively large number of measurements under the assumption that they represent a statistically unbiased sample. This allows us to constrain the ratio between the maximum predicted polarization and the measured one, which is an indicator of the geometry of the magnetic field in the downstream region of the external shock. We find that the measured polarization is substantially suppressed with respect to the maximum possible for either a completely ordered magnetic field parallel to the shock normal or to a field that is entirely contained in the shock plane. The measured polarization is limited, on average, to between 25 and 30% of the maximum theoretically possible value. This reduction requires the perpendicular component of the magnetic field to be dominant in energy with respect to the component parallel to the shock front, as expected for a shock generated and/or shock compressed field. We find, however, that the data only marginally support the assumption of a simple top-hat jet, pointing towards a more complex geometry for the outflow.
We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $text{S/N}geq10.0$ above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index $alpha$, the high-energy power-law index $beta$, the peak energy in the observed $ u F_ u$ spectrum $E_text{p}$, and the difference between the low- and high-energy power-law indices $Delta s=alpha-beta$. Using the distributions of $Delta s$ and $beta$, the electron population index $p$ is found to be consistent with the moderately fast scenario which fast- and slow-cooling scenarios cannot be distinguished. We also apply a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test for consistency with a synchrotron origin for the prompt emission and obtain the distributions for the two break energies $E_text{b,1}$ and $E_text{b,2}$, the middle segment power-law index $beta$, and the Planck function temperature $kT$. A synchrotron model is found consistent with the majority of time-resolved spectra for these eight energetic Fermi GBM bursts with good high-energy photon statistics, as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by inclusion of a thermal component or when an evolving magnetic field is accounted for.
113 - V.Savchenko , A.Neronov 2009
We study time-resolved spectra of the prompt emission of Swift Gamma-ray bursts (GRB). Our goal is to see if previous BATSE claims of the existence of a large amount of spectra with the low energy photon indices harder than 2/3 are consistent with Swift data. We perform a systematic search of the episodes of the spectral hardening down to the photon indices below 2/3 in the prompt emission spectra of Swift GRBs. We show that the data of the BAT instrument on board of Swift are consistent with BATSE data, if one takes into account differences between the two instruments. Much lower statistics of the very hard spectra in Swift GRBs is explained by the smaller field of view and narrower energy band of the BAT telescope.
Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies $gtrsim10$ keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays ($sim$ 0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at $sim$keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV-1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G $<B^prime<40$ G) and for the location of the region where the radiation is produced ($R_gamma>10^{16}$ cm).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا