No Arabic abstract
We study the ensemble of linear polarization measurement in the optical afterglows of long-duration gamma-ray bursts. We assume a non sideways-expanding top-hat jet geometry and use the relatively large number of measurements under the assumption that they represent a statistically unbiased sample. This allows us to constrain the ratio between the maximum predicted polarization and the measured one, which is an indicator of the geometry of the magnetic field in the downstream region of the external shock. We find that the measured polarization is substantially suppressed with respect to the maximum possible for either a completely ordered magnetic field parallel to the shock normal or to a field that is entirely contained in the shock plane. The measured polarization is limited, on average, to between 25 and 30% of the maximum theoretically possible value. This reduction requires the perpendicular component of the magnetic field to be dominant in energy with respect to the component parallel to the shock front, as expected for a shock generated and/or shock compressed field. We find, however, that the data only marginally support the assumption of a simple top-hat jet, pointing towards a more complex geometry for the outflow.
Polarization can serve as a probe of the radiation mechanism and magnetic field (MF) configuration in gamma-ray bursts (GRBs). In the case of constant MF, the synchrotron polarization in the prompt phase of GRBs has been widely studied. In this paper, we consider the case of the decaying MF. We calculate the time-averaged and instantaneous synchrotron polarizations in a pulse for different viewing angles and for the large-scale decaying MF model, which can explain the so-called Band spectrum. We find that the on-axis time-averaged polarization degree (PD) in the energy band of 50-500 keV for the decaying large-scale MF model ($sim 0.6$ for typical parameters) is higher than that in the constant MF model ($sim 0.5$). An interesting result is the instantaneous PD in the off-axis case will experience a turnover, i.e., the PD will evolve from a positive value to a negative one. This suggests the polarization angle (PA) change by an angle of $90^circ$. Such a result is roughly consistent with the discovery of the PA evolution within a pulse in some bursts, such as GRB 170114A and GRB 160821A. Our result implies at least a part of bursts (off-axis bursts) should have the PA evolution in a pulse.
The external forward shock (EFS) models have been the standard paradigm to interpret the broad-band afterglow data of gamma-ray bursts (GRBs). One prediction of the models is that some afterglow temporal breaks at different energy bands should be achromatic. Observations in the Swift era have revealed chromatic afterglow behaviors at least in some GRBs, casting doubts on the EFS origin of GRB afterglows. In this paper, we perform a systematic study to address the question: how bad/good are the external forward shock models? Our sample includes 85 GRBs well-monitored X-ray and optical lightcurves. Based on how well the data abide by the EFS models, we categorize them as: Gold sample: (Grade I and II) include 45/85 GRBs. They show evidence of, or are consistent with having, an achromatic break. The temporal/spectral behaviors in each afterglow segment are consistent with the predictions (closure relations) of the EFS models. Silver sample: (Grade III and IV) include 37/85 GRBs. They are also consistent with having an achromatic break, even though one or more afterglow segments do not comply with the closure relations. Bad sample: (Grade V), 3/85 shows direct evidence of chromatic behaviors, suggesting that the EFS models are inconsistent with the data. These are included in the Bad sample. We further perform statistical analyses of various observational properties ($alpha$, $beta$, $t_b$ and model parameters (energy injection index q, p, $theta_j$, $eta_gamma$, etc) of the GRBs in the Gold Sample, and derive constraints on the magnetization parameter $epsilon_B$ in the EFS. Overall, we conclude that the simplest EFS models can account for the multi-wavelength afterglow data of at least half of the GRBs. When more advanced modeling (e.g., long-lasting reverse shock, structured jets) is invoked, up to $>90 %$ of the afterglows may be interpreted within the framework of the ESF models.
We consider a model in which the ultra-relativistic jet in a gamma-ray burst (GRB) is cold and magnetically accelerated. We assume that the energy flux in the outflowing material is partially thermalized via internal shocks or a reverse shock, and we estimate the maximum amount of radiation that could be produced in such magnetized shocks. We compare this estimate with the available observational data on prompt gamma-ray emission in GRBs. We find that, even with highly optimistic assumptions, the magnetized jet model is radiatively too inefficient to be consistent with observations. One way out is to assume that much of the magnetic energy in the post-shock, or even pre-shock, jet material is converted to particle thermal energy by some unspecified process, and then radiated. This can increase the radiative efficiency sufficiently to fit observations. Alternatively, jet acceleration may be driven by thermal pressure rather than magnetic fields. In this case, which corresponds to the traditional fireball model, sufficient prompt GRB emission could be produced either from shocks at a large radius or from the jet photosphere closer to the center.
We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse shock signatures - GRBs 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424 and 130427A. By modeling their optical afterglows with reverse and forward shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time ($<$ 1ks) optical spectral luminosity, X-ray afterglow luminosity and $gamma$-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse shock emission have fainter than average optical forward-shock emission at late time ($>$ 10 ks). We find that GRBs with an identifiable reverse shock component show high magnetization parameter $R_{mathrm{B}} = varepsilon_{rm B,r}/varepsilon_{rm B,f} sim 2 - 10^4$. Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.
We report on the third phase of our study of the neutrino-cooled hyperaccreting torus around a black hole that powers the jet in Gamma Ray Bursts. We focus on the influence of the black hole spin on the properties of the torus. The structure of a stationary torus around the Kerr black hole is solved numerically. We take into account the detailed treatment of the microphysics in the nuclear equation of state that includes the neutrino trapping effect. We find, that in the case of rapidly rotating black holes, the thermal instability discussed in our previous work is enhanced and develops for much lower accretion rates. We also find the important role of the energy transfer from the rotating black hole to the torus, via the magnetic coupling.