Do you want to publish a course? Click here

On the weak scaling of the contact distance between two fluctuating interfaces with system size

230   0   0.0 ( 0 )
 Added by Clemens Moritz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A pair of flat parallel surfaces, each freely diffusing along the direction of their separation, will eventually come into contact. If the shapes of these surfaces also fluctuate, then contact will occur when their centers of mass remain separated by a nonzero distance $ell$. Here we examine the statistics of $ell$ at the time of first contact for surfaces that evolve in time according to the Edwards-Wilkinson equation. We present a general approach to calculate its probability distribution and determine how its most likely value $ell^*$ depends on the surfaces lateral size $L$. We are motivated by an interest in the motion of interfaces between two phases at conditions of thermodynamic coexistence, and in particular the annihilation of domain wall pairs under periodic boundary conditions. Computer simulations of this scenario verify the predicted scaling behavior in two and three dimensions. In the latter case, slow growth where $ell^ast$ is an algebraic function of $log L$ implies that slab-shaped domains remain topologically intact until $ell$ becomes very small, contradicting expectations from equilibrium thermodynamics.



rate research

Read More

A set of $N$ points is chosen randomly in a $D$-dimensional volume $V=a^D$, with periodic boundary conditions. For each point $i$, its distance $d_i$ is found to its nearest neighbour. Then, the maximal value is found, $d_{max}=max(d_i, i=1,...,N)$. Our numerical calculations indicate, that when the density $N/V$=const, $d_{max}$ scales with the linear system size as $d^2_{max}propto a^phi$, with $phi=0.24pm0.04$ for $D=1,2,3,4$.
Ferroic domain walls are known to display the characteristic scaling properties of self-affine rough interfaces. Different methods have been used to extract roughness information in ferroelectric and ferromagnetic materials. Here, we review these different approaches, comparing roughness scaling analysis based on displacement autocorrelation functions in real space, both locally and globally, to reciprocal space methods. This allows us to address important practical issues such as the necessity of a sufficient statistical averaging. As an ideal, artifact-free reference case and particularly targeting finite-size systems, we consider two cases of numerically simulated interfaces, one in equilibrium with a disordered energy landscape and one corresponding to the critical depinning state when the external applied driving force equals the depinning force. We find that the use of the reciprocal space methods based on the structure factor allows the most robust extraction of the roughness exponent when enough statistics is available, while real space analysis based on the roughness function allows the most efficient exploitation of a dataset containing only a limited number of interfaces of variable length. This information is thus important for properly quantifying roughness exponents in ferroic materials.
Fluctuations of the interface between coexisting colloidal fluid phases have been measured with confocal microscopy. Due to a very low surface tension, the thermal motions of the interface are so slow, that a record can be made of the positions of the interface. The theory of the interfacial height fluctuations is developed. For a host of correlation functions, the experimental data are compared with the theoretical expressions. The agreement between theory and experiment is remarkably good.
At mesoscopic scales electrolyte solutions are modeled by the fluctuating generalized Poisson-Nernst-Planck (PNP) equations [J.-P. Peraud et al., Phys. Rev. F, 1(7):074103, 2016]. However, at length and time scales larger than the Debye scales, electrolytes are effectively electroneutral, and the charged-fluid PNP equations become too stiff to solve numerically. Here we formulate the isothermal incompressible equations of fluctuating hydrodynamics for reactive multispecies mixtures involving charged species in the electroneutral limit, and design a numerical algorithm to solve these equations. Our model does not assume a dilute electrolyte solution but rather treats all species on an equal footing, accounting for cross-diffusion and non-ideality using Maxwell-Stefan theory. By enforcing local electroneutrality as a constraint, we obtain an elliptic equation for the electric potential that replaces the Poisson equation in the fluctuating PNP equations. We develop a second-order midpoint predictor-corrector algorithm to solve either the charged-fluid or electroneutral equations with only a change of the elliptic solver. We use the electroneutral algorithm to study a gravitational fingering instability, triggered by thermal fluctuations, at an interface where an acid and base react to neutralize each other. Our results demonstrate that, because the four ions diffuse with very different coefficients, one must treat each ion as an individual species, and cannot treat the acid, base, and salt as neutral species. This emphasizes the differences between electrodiffusion and classical Fickian diffusion, even at electroneutral scales.
80 - Alfred Hucht 2017
Based on the results published recently [J. Phys. A: Math. Theor. 50, 065201 (2017)], the universal finite-size contributions to the free energy of the square lattice Ising model on the $Ltimes M$ rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit $L,Mtoinfty$, $Tto T_mathrm{c}$, with fixed temperature scaling variable $xpropto(T/T_mathrm{c}-1)M$ and fixed aspect ratio $rhopropto L/M$. We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point $T=T_mathrm{c}$ we confirm predictions from conformal field theory by Cardy & Peschel [Nucl. Phys. B 300, 377 (1988)] and by Kleban & Vassileva [J. Phys. A: Math. Gen. 24, 3407 (1991)]. The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا