Do you want to publish a course? Click here

A Regional Bolus Tracking and Real-time B$_1$ Calibration Method for Hyperpolarized $^{13}$C MRI

416   0   0.0 ( 0 )
 Added by Peder Larson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Purpose: Acquisition timing and B$_1$ calibration are two key factors that affect the quality and accuracy of hyperpolarized $^{13}$C MRI. The goal of this project was to develop a new approach using regional bolus tracking to trigger Bloch-Siegert B$_1$ mapping and real-time B$_1$ calibration based on regional B$_1$ measurements, followed by dynamic imaging of hyperpolarized $^{13}C$ metabolites in vivo. Methods: The proposed approach was implemented on a system which allows real-time data processing and real-time control on the sequence. Real-time center frequency calibration upon the bolus arrival was also added. The feasibility of applying the proposed framework for in vivo hyperpolarized $^{13}$C imaging was tested on healthy rats, tumor-bearing mice and a healthy volunteer on a clinical 3T scanner following hyperpolarized [1-$^{13}$C]pyruvate injection. Multichannel receive coils were used in the human study. Results: Automatic acquisition timing based on either regional bolus peak or bolus arrival was achieved with the proposed framework. Reduced blurring artifacts in real-time reconstructed images were observed with real-time center frequency calibration. Real-time computed B$_1$ scaling factors agreed with real-time acquired B$_1$ maps. Flip angle correction using B$_1$ maps results in a more consistent quantification of metabolic activity (i.e, pyruvate-to-lactate conversion, k$_{PL}$). Experiment recordings are provided to demonstrate the real-time actions during the experiment. Conclusion: The proposed method was successfully demonstrated on animals and a human volunteer, and is anticipated to improve the efficient use of the hyperpolarized signal as well as the accuracy and robustness of hyperpolarized $^{13}$C imaging.



rate research

Read More

Purpose: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-Spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. Methods: In this work we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. Results: We have implemented this sequence, both via simulation and on a pre-clinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. Conclusion: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.
Purpose: The balanced steady-state free precession sequence has been previously explored to improve the efficient use of non-recoverable hyperpolarized $^{13}$C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP (MS-3DSSFP) sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-$^{13}$C]pyruvate studies on a clinical 3T scanner. Methods: Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal $^{13}$C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-$^{13}$C]pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite specific gradient echo (MS-GRE) sequences for lactate imaging. Results: Simulations, phantom and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model and human kidneys. Conclusions: Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-$^{13}$C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate.
It was demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with ultraviolet (UV) light, enabling radical-free dissolution DNP. Although pyruvate is endogenous, an excess of additional pyruvate may perturb metabolic processes, making it potentially unsuitable as a polarizing agent when studying fatty acids or carbohydrate metabolism. Therefore, the aim of the study was to characterize solutions containing endogenously-occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (AKV) and alpha-ketobutyrate (AKB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing AKV and AKB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with ESR and compared to pyruvate. The addition of 13C labeled substrates to the sample matrix altered the radical yield of the precursors. Using AKB increased the 13C-labeled glucose liquid state polarization to 16.3 +/- 1.3% compared with 13.3 +/- 1.5% obtained with pyruvate, and 8.9 +/- 2.1% with AKV. For [1-13C]butyric acid, polarization levels of 12.1 +/- 1.1% for AKV and 12.9 +/- 1.7% for AKB were achieved. Hyperpolarized [1-13C]butyrate metabolism in the heart revealed label incorporation into [1-13C]acetylcarnitine, [1-13C]acetoacetate, [1-13C]butyrylcarnitine, [5-13C]glutamate and [5-13C]citrate. This study demonstrates the potential of AKV and AKB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.
156 - Yuan Xu , Hao Yan , Luo Ouyang 2014
In this paper, we present a new method to generate an instantaneous volumetric image using a single x-ray projection. To fully extract motion information hidden in projection images, we partitioned a projection image into small patches. We utilized a sparse learning method to automatically select patches that have a high correlation with principal component analysis (PCA) coefficients of a lung motion model. A model that maps the patch intensity to the PCA coefficients is built along with the patch selection process. Based on this model, a measured projection can be used to predict the PCA coefficients, which are further used to generate a motion vector field and hence a volumetric image. We have also proposed an intensity baseline correction method based on the partitioned projection, where the first and the second moments of pixel intensities at a patch in a simulated image are matched with those in a measured image via a linear transformation. The proposed method has been valid in simulated data and real phantom data. The algorithm is able to identify patches that contain relevant motion information, e.g. diaphragm region. It is found that intensity correction step is important to remove the systematic error in the motion prediction. For the simulation case, the sparse learning model reduced prediction error for the first PCA coefficient to 5%, compared to the 10% error when sparse learning is not used. 95th percentile error for the predicted motion vector is reduced from 2.40 mm to 0.92mm. In the phantom case, the predicted tumor motion trajectory is successfully reconstructed with 0.82 mm mean vector field error compared to 1.66 mm error without using the sparse learning method. The algorithm robustness with respect to sparse level, patch size, and existence of diaphragm, as well as computation time, has also been studied.
63 - Florian Griese 2019
Purpose: Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography (IVOCT) catheters are tracked in real time in order to compensate for image artifacts related to relative motion. Our approach demonstrates the feasibility for bimodal IVOCT and MPI in-vitro experiments. Material and Methods: During IVOCT imaging of a stenosis phantom the catheter is tracked using MPI. A 4D trajectory of the catheter tip is determined from the MPI data using center of mass sub-voxel strategies. A custom built IVOCT imaging adapter is used to perform different catheter motion profiles: no motion artifacts, motion artifacts due to catheter bending, and heart beat motion artifacts. Two IVOCT volume reconstruction methods are compared qualitatively and quantitatively using the DICE metric and the known stenosis length. Results: The MPI-tracked trajectory of the IVOCT catheter is validated in multiple repeated measurements calculating the absolute mean error and standard deviation. Both volume reconstruction methods are compared and analyzed whether they are capable of compensating the motion artifacts. The novel approach of MPI-guided catheter tracking corrects motion artifacts leading to a DICE coefficient with a minimum of 86% in comparison to 58% for a standard reconstruction approach. Conclusions: IVOCT catheter tracking with MPI in real time is an auspicious method for radiation free MPI-guided IVOCT interventions. The combination of MPI and IVOCT can help to reduce motion artifacts due to catheter bending and heart beat for optimized IVOCT volume reconstructions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا