No Arabic abstract
In this paper, we present a new method to generate an instantaneous volumetric image using a single x-ray projection. To fully extract motion information hidden in projection images, we partitioned a projection image into small patches. We utilized a sparse learning method to automatically select patches that have a high correlation with principal component analysis (PCA) coefficients of a lung motion model. A model that maps the patch intensity to the PCA coefficients is built along with the patch selection process. Based on this model, a measured projection can be used to predict the PCA coefficients, which are further used to generate a motion vector field and hence a volumetric image. We have also proposed an intensity baseline correction method based on the partitioned projection, where the first and the second moments of pixel intensities at a patch in a simulated image are matched with those in a measured image via a linear transformation. The proposed method has been valid in simulated data and real phantom data. The algorithm is able to identify patches that contain relevant motion information, e.g. diaphragm region. It is found that intensity correction step is important to remove the systematic error in the motion prediction. For the simulation case, the sparse learning model reduced prediction error for the first PCA coefficient to 5%, compared to the 10% error when sparse learning is not used. 95th percentile error for the predicted motion vector is reduced from 2.40 mm to 0.92mm. In the phantom case, the predicted tumor motion trajectory is successfully reconstructed with 0.82 mm mean vector field error compared to 1.66 mm error without using the sparse learning method. The algorithm robustness with respect to sparse level, patch size, and existence of diaphragm, as well as computation time, has also been studied.
The MR-Linac is a combination of an MR-scanner and radiotherapy linear accelerator (Linac) which holds the promise to increase the precision of radiotherapy treatments with MR-guided radiotherapy by monitoring motion during radiotherapy with MRI, and adjusting the radiotherapy plan accordingly. Optimal MR-guidance for respiratory motion during radiotherapy requires MR-based 3D motion estimation with a latency of 200-500 ms. Currently this is still challenging since typical methods rely on MR-images, and are therefore limited by the 3D MR-imaging latency. In this work, we present a method to perform non-rigid 3D respiratory motion estimation with 170 ms latency, including both acquisition and reconstruction. The proposed method called real-time low-rank MR-MOTUS reconstructs motion-fields directly from k-space data, and leverages an explicit low-rank decomposition of motion-fields to split the large scale 3D+t motion-field reconstruction problem posed in our previous work into two parts: (I) a medium-scale offline preparation phase and (II) a small-scale online inference phase which exploits the results of the offline phase for real-time computations. The method was validated on free-breathing data of five volunteers, acquired with a 1.5T Elekta Unity MR-Linac. Results show that the reconstructed 3D motion-field are anatomically plausible, highly correlated with a self-navigation motion surrogate (R = 0.975 +/- 0.0110), and can be reconstructed with a total latency of 170 ms that is sufficient for real-time MR-guided abdominal radiotherapy.
We present PRETUS -a Plugin-based Real Time UltraSound software platform for live ultrasound image analysis and operator support. The software is lightweight; functionality is brought in via independent plug-ins that can be arranged in sequence. The software allows to capture the real-time stream of ultrasound images from virtually any ultrasound machine, applies computational methods and visualises the results on-the-fly. Plug-ins can run concurrently without blocking each other. They can be implemented in C ++ and Python. A graphical user interface can be implemented for each plug-in, and presented to the user in a compact way. The software is free and open source, and allows for rapid prototyping and testing of real-time ultrasound imaging methods in a manufacturer-agnostic fashion. The software is provided with input, output and processing plug-ins, as well as with tutorials to illustrate how to develop new plug-ins for PRETUS.
Obtaining 3D information from a single X-ray exposure at high-brilliance sources, such as X-ray free-electron lasers (XFELs) [1] or diffraction-limited storage rings [2], allows the study of fast dynamical processes in their native environment. However, current X-ray 3D methodologies are either not compatible with single-shot approaches because they rely on multiple exposures, such as confocal microscopy [3, 4] and tomography [5, 6]; or they record a single projection per pulse [7] and are therefore restricted to approximately two-dimensional objects [8]. Here we propose and verify experimentally a novel imaging approach named X-ray multi-projection imaging (XMPI), which simultaneously acquires several projections without rotating the sample at significant tomographic angles. When implemented at high-brilliance sources it can provide volumetric information using a single pulse. Moreover, XMPI at MHz repetition XFELs could allow a way to record 3D movies of deterministic or stochastic natural processes in the micrometer to nanometer resolution range, and at time scales from microseconds down to femtoseconds.
Purpose: To develop a MRI acquisition and reconstruction framework for volumetric cine visualisation of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods: Four-dimensional depiction was achieved using a highly-accelerated multi-planar real-time balanced steady state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronisation and outlier rejection. The framework was evaluated and optimised using a numerical phantom, and evaluated in a study of 20 mid- to late-gestational age human fetal subjects. Reconstructed cine volumes were evaluated by experienced cardiologists and compared with matched ultrasound. A preliminary assessment of flow-sensitive reconstruction using the velocity information encoded in the phase of dynamic images is included. Results: Reconstructed cine volumes could be visualised in any 2D plane without the need for highly-specific scan plane prescription prior to acquisition or for maternal breath hold to minimise motion. Reconstruction was fully automated aside from user-specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Expert evaluation suggested the reconstructed volumes can be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusion: The proposed methods show promise as a framework for motion-compensated 4D assessment of the fetal heart and great vessels.
Conventional energy filters for x-ray imaging are based on absorbing materials which attenuate low energy photons, sometimes combined with an absorption edge, thus also discriminating towards photons of higher energies. These filters are fairly inefficient, in particular for photons of higher energies, and other methods for achieving a narrower bandwidth have been proposed. Such methods include various types of monochromators, based on for instance mosaic crystals or refractive multi-prism x-ray lenses (MPLs). Prism-array lenses (PALs) are similar to MPLs, but are shorter, have larger apertures, and higher transmission. A PAL consists of a number of small prisms arranged in columns perpendicular to the optical axis. The column height decreases along the optical axis so that the projection of lens material is approximately linear with a Fresnel phase-plate pattern superimposed on it. The focusing effect is one dimensional, and the lens is chromatic. Hence, unwanted energies can be blocked by placing a slit in the image plane of a desired energy. We present the first experimental and theoretical results on an energy filter based on a silicon PAL. The study includes an evaluation of the spectral shaping properties of the filter as well as a quantification of the achievable increase in dose efficiency compared to standard methods. Previously, PALs have been investigated with synchrotron radiation, but in this study a medical imaging setup, based on a regular x-ray tube, is considered.