Do you want to publish a course? Click here

Numerical solutions to Giovanninis parton branching equation up to TeV energies at the LHC

85   0   0.0 ( 0 )
 Added by Zongjin Ong
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Giovanninis parton branching equation is integrated numerically using the 4th-order Runge-Kutta method. Using a simple hadronisation model, a charged-hadron multiplicity distribution is obtained. This model is then fitted to various experimental data up to the TeV scale to study how the Giovannini parameters vary with collision energy and type. The model is able to describe hadronic collisions up to the TeV scale and reveals the emergence of gluonic activity as the centre-of-mass energy increases. A prediction is made for $sqrt{s}$ = 14 TeV.



rate research

Read More

The stochastic solutions to the Wigner equation, which explain the nonlocal oscillatory integral operator $Theta_V$ with an anti-symmetric kernel as {the generator of two branches of jump processes}, are analyzed. All existing branching random walk solutions are formulated based on the Hahn-Jordan decomposition $Theta_V=Theta^+_V-Theta^-_V$, i.e., treating $Theta_V$ as the difference of two positive operators $Theta^pm_V$, each of which characterizes the transition of states for one branch of particles. Despite the fact that the first moments of such models solve the Wigner equation, we prove that the bounds of corresponding variances grow exponentially in time with the rate depending on the upper bound of $Theta^pm_V$, instead of $Theta_V$. In other words, the decay of high-frequency components is totally ignored, resulting in a severe {numerical sign problem}. {To fully utilize such decay property}, we have recourse to the stationary phase approximation for $Theta_V$, which captures essential contributions from the stationary phase points as well as the near-cancelation of positive and negative weights. The resulting branching random walk solutions are then proved to asymptotically solve the Wigner equation, but {gain} a substantial reduction in variances, thereby ameliorating the sign problem. Numerical experiments in 4-D phase space validate our theoretical findings.
We explore the possibility to include small-$x$ dynamics effects in the parton branching (PB) approach to transverse momentum dependent (TMD) parton distribution functions. To this end, we first revisit the PB method at leading order, presenting a new fit to inclusive-DIS precision data, and performing a numerical study of the dynamic soft-gluon resolution scale. Next we investigate the effects of modified CCFM kernels, including both Sudakov and non-Sudakov form factors.
89 - A. Baltz , G. Baur , S.J. Brodsky 2007
We present the mini-proceedings of the workshop on ``Photoproduction at collider energies: from RHIC and HERA to the LHC held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 2007. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-$x$ QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.
The experimental capability of recognizing the presence of b quarks in complex hadronic final states has addressed the attention towards final states with bbar{b} pairs for observing the production of the Higgs boson at the LHC, in the intermediate Higgs mass range.We point out that double parton scattering processes are going to represent a sizeable background to the process.
We discuss briefly a recent study of new observables in LHC inclusive events with three tagged jets. One jet is in the forward direction, the second is in the backward direction and well-separated in rapidity from the first, whereas, the third tagged jet is to be found in more central regions of the detector. Taking into consideration that non-tagged mini-jet emissions are allowed and that they may be accounted for by the BFKL gluon Green function, we project the cross sections on azimuthal-angle components and define suitable ratios based on these projections which can provide several distinct tests of the BFKL dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا