No Arabic abstract
We investigate the ab-initio formation of super-massive stars in a pristine atomic cooling halo. The halo is extracted from a larger self-consistent parent simulation. The halo remains metal-free and star formation is suppressed due to a combination of dynamical heating from mergers and a mild ($J_{rm LW} sim 2 - 10 J_{21}$(z)) Lyman-Werner (LW) background. We find that more than 20 very massive stars form with stellar masses greater than 1000 M$_{odot}$. The most massive star has a stellar mass of over 6000 M$_{odot}$. However, accretion onto all stars declines significantly after the first $sim$ 100 kyr of evolution as the surrounding material is accreted and the turbulent nature of the gas causes the stars to move to lower density regions. We post-process the impact of ionising radiation from the stars and find that ionising radiation is not a limiting factor when considering SMS formation and growth. Rather the birth environments are highly turbulent and a steady accretion flow is not maintained within the timescale (2 Myr) of our simulations. As the massive stars end their lives as direct collapse black holes this will seed these embryonic haloes with a population of black holes with masses between approximately 300 M$_{odot}$ and 10,000 M$_{odot}$. Afterwards they may sink to the centre of the haloes, eventually coalescing to form larger intermediate mass black holes whose in-situ mergers will be detectable by LISA.
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. We show that a massive stellar BH seed can easily grow to $sim 10^3 - 10^4,M_odot$ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers, so that a negative correlation exists between final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs.
A mechanism of creation of stellar-like objects in the very early universe, from the QCD phase transition till BBN and somewhat later, is studied. It is argued that in the considered process primordial black holes with masses above a few solar masses up to super-heavy ones could be created. This may explain an early quasar creation with evolved chemistry in surrounding medium and the low mass cutoff of the observed black holes. It is also shown that dense primordial stars can be created at the considered epoch. Such stars could later become very early supernovae and in particular high redshift gamma-bursters. In a version of the model some of the created objects can consist of antimatter.
We describe ongoing searches for intermediate-mass black holes with M_BH ~ 100-10^5 M_sun. We review a range of search mechanisms, both dynamical and those that rely on accretion signatures. We find that dynamical and accretion signatures alike point to a high fraction of 10^9-10^10 M_sun galaxies hosting black holes with M_BH<10^5 M_sun. In contrast, there are no solid detections of black holes in globular clusters. There are few observational constraints on black holes in any environment with M_BH ~ 100-10^4 M_sun. Considering low-mass galaxies with dynamical black hole masses and constraining limits, we find that the M_BH-sigma_* relation continues unbroken to M_BH~10^5 M_sun, albeit with large scatter. We believe the scatter is at least partially driven by a broad range in black hole mass, since the occupation fraction appears to be relatively high in these galaxies. We fold the observed scaling relations with our empirical limits on occupation fraction and the galaxy mass function to put observational bounds on the black hole mass function in galaxy nuclei. We are pessimistic that local demographic observations of galaxy nuclei alone could constrain seeding mechanisms, although either high-redshift luminosity functions or robust measurements of off-nuclear black holes could begin to discriminate models.
Collisions were suggested to potentially play a role in the formation of massive stars in present day clusters, and have likely been relevant during the formation of massive stars and intermediate mass black holes within the first star clusters. In the early Universe, the first stellar clusters were particularly dense, as fragmentation typically only occurred at densities above $10^9$cm$^{-3}$, and the radii of the protostars were enhanced due to the larger accretion rates, suggesting a potentially more relevant role of stellar collisions. We present here a detailed parameter study to assess how the number of collisions as well as the mass growth of the most massive object depends on the properties of the cluster, and we characterize the time evolution with three effective parameters, the time when most collisions occur, the duration of the collisions period, as well as the normalization required to obtain the total number of collisions. We apply our results to typical Population III (Pop.III) clusters of about $1000$M$_odot$, finding that a moderate enhancement of the mass of the most massive star by a factor of a few can be expected. For more massive Pop.III clusters as expected in the first atomic cooling halos, we expect a more significant enhancement by a factor of $15-32$. We therefore conclude that collisions in massive Pop.III clusters were likely relevant to form the first intermediate mass black holes.
In many galactic nuclei, a nuclear stellar cluster (NSC) co-exists with a supermassive black hole (SMBH). In this work, we explore the idea that the NSC forms before the SMBH through the merger of several stellar clusters that may contain intermediate-mass black holes (IMBHs). These IMBHs can subsequently grow by mergers and accretion to form an SMBH. To check the observable consequences of this proposed SMBH seeding mechanism, we created an observationally motivated mock population of galaxies, in which NSCs are constructed by aggregating stellar clusters that may or may not contain IMBHs. We model the growth of IMBHs in the NSCs through gravitational wave (GW) mergers with other IMBHs and gas accretion. In the case of GW mergers, the merged BH can either be retained or ejected depending on the GW recoil kick it receives. The likelihood of retaining the merged BH increases if we consider growth of IMBHs in the NSC through gas accretion. We find that nucleated lower-mass galaxies ($rm M_{star} lesssim 10^{9} M_{odot}$; e.g. M33) have an SMBH seed occupation fraction of about 0.3 to 0.5. This occupation fraction increases with galaxy stellar mass and for more massive galaxies ($rm 10^{9} M_{odot} lesssim rm M_{star} lesssim 10^{11} M_{odot}$), it is between 0.5 and 0.8, depending on how BH growth is modelled. These occupation fractions are consistent with observational constraints. Furthermore, allowing for BH growth also allows us to reproduce the observed diversity in the mass range of SMBHs in the $rm M_{rm NSC} - M_{rm BH}$ plane.