Do you want to publish a course? Click here

Motion Capture from Internet Videos

109   0   0.0 ( 0 )
 Added by Qing Shuai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in image-based human pose estimation make it possible to capture 3D human motion from a single RGB video. However, the inherent depth ambiguity and self-occlusion in a single view prohibit the recovery of as high-quality motion as multi-view reconstruction. While multi-view videos are not common, the videos of a celebrity performing a specific action are usually abundant on the Internet. Even if these videos were recorded at different time instances, they would encode the same motion characteristics of the person. Therefore, we propose to capture human motion by jointly analyzing these Internet videos instead of using single videos separately. However, this new task poses many new challenges that cannot be addressed by existing methods, as the videos are unsynchronized, the camera viewpoints are unknown, the background scenes are different, and the human motions are not exactly the same among videos. To address these challenges, we propose a novel optimization-based framework and experimentally demonstrate its ability to recover much more precise and detailed motion from multiple videos, compared against monocular motion capture methods.



rate research

Read More

We present a novel Structure from Motion pipeline that is capable of reconstructing accurate camera poses for panorama-style video capture without prior camera intrinsic calibration. While panorama-style capture is common and convenient, previous reconstruction methods fail to obtain accurate reconstructions due to the rotation-dominant motion and small baseline between views. Our method is built on the assumption that the camera motion approximately corresponds to motion on a sphere, and we introduce three novel relative pose methods to estimate the fundamental matrix and camera distortion for spherical motion. These solvers are efficient and robust, and provide an excellent initialization for bundle adjustment. A soft prior on the camera poses is used to discourage large deviations from the spherical motion assumption when performing bundle adjustment, which allows cameras to remain properly constrained for optimization in the absence of well-triangulated 3D points. To validate the effectiveness of the proposed method we evaluate our approach on both synthetic and real-world data, and demonstrate that camera poses are accurate enough for multiview stereo.
We propose a new loss function, called motion loss, for the problem of monocular 3D Human pose estimation from 2D pose. In computing motion loss, a simple yet effective representation for keypoint motion, called pairwise motion encoding, is introduced. We design a new graph convolutional network architecture, U-shaped GCN (UGCN). It captures both short-term and long-term motion information to fully leverage the additional supervision from the motion loss. We experiment training UGCN with the motion loss on two large scale benchmarks: Human3.6M and MPI-INF-3DHP. Our model surpasses other state-of-the-art models by a large margin. It also demonstrates strong capacity in producing smooth 3D sequences and recovering keypoint motion.
83 - Xin Chen , Anqi Pang , Wei Yang 2021
Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we propose SportsCap -- the first approach for simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input. Our approach utilizes the semantic and temporally structured sub-motion prior in the embedding space for motion capture and understanding in a data-driven multi-task manner. To enable robust capture under complex motion patterns, we propose an effective motion embedding module to recover both the implicit motion embedding and explicit 3D motion details via a corresponding mapping function as well as a sub-motion classifier. Based on such hybrid motion information, we introduce a multi-stream spatial-temporal Graph Convolutional Network(ST-GCN) to predict the fine-grained semantic action attributes, and adopt a semantic attribute mapping block to assemble various correlated action attributes into a high-level action label for the overall detailed understanding of the whole sequence, so as to enable various applications like action assessment or motion scoring. Comprehensive experiments on both public and our proposed datasets show that with a challenging monocular sports video input, our novel approach not only significantly improves the accuracy of 3D human motion capture, but also recovers accurate fine-grained semantic action attributes.
We present a system for learning motion of independently moving objects from stereo videos. The only human annotation used in our system are 2D object bounding boxes which introduce the notion of objects to our system. Unlike prior learning based work which has focused on predicting dense pixel-wise optical flow field and/or a depth map for each image, we propose to predict object instance specific 3D scene flow maps and instance masks from which we are able to derive the motion direction and speed for each object instance. Our network takes the 3D geometry of the problem into account which allows it to correlate the input images. We present experiments evaluating the accuracy of our 3D flow vectors, as well as depth maps and projected 2D optical flow where our jointly learned system outperforms earlier approaches trained for each task independently.
We present a method for decomposing the 3D scene flow observed from a moving stereo rig into stationary scene elements and dynamic object motion. Our unsupervised learning framework jointly reasons about the camera motion, optical flow, and 3D motion of moving objects. Three cooperating networks predict stereo matching, camera motion, and residual flow, which represents the flow component due to object motion and not from camera motion. Based on rigid projective geometry, the estimated stereo depth is used to guide the camera motion estimation, and the depth and camera motion are used to guide the residual flow estimation. We also explicitly estimate the 3D scene flow of dynamic objects based on the residual flow and scene depth. Experiments on the KITTI dataset demonstrate the effectiveness of our approach and show that our method outperforms other state-of-the-art algorithms on the optical flow and visual odometry tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا