Every Riemannian metric or Finsler metric on a manifold induces a spray via its geodesics. In this paper, we discuss several expressions for the X-curvature of a spray. We show that the sprays obtained by a projective deformation using the S-curvature always have vanishing X-curvature. Then we establish the Beltrami Theorem for sprays with X=0
We examine the class of compact Hermitian manifolds with constant holomorphic sectional curvature. Such manifolds are conjectured to be Kahler (hence a complex space form) when the constant is non-zero and Chern flat (hence a quotient of a complex Lie group) when the constant is zero. The conjecture is known in complex dimension two but open in higher dimensions. In this paper, we establish a partial solution in complex dimension three by proving that any compact Hermitian threefold with zero real bisectional curvature must be Chern flat. Real bisectional curvature is a curvature notion introduced by Xiaokui Yang and the second named author in 2019, generalizing holomorphic sectional curvature. It is equivalent to the latter in the Kahler case and is slightly stronger in general.
In this paper, we study one of the open problems in Finsler geometry which presented by Matsumoto-Shimada about the existence of P-reducible metric which is not C-reducible. For this aim, we study a class of Finsler metrics called generalized P-reducible metrics that contains the class of P-reducible metrics. We prove that every generalized P-reducible $(alpha, beta)$-metric with vanishing S-curvature reduces to a Berwald metric or C-reducible metric. It results that there is not any concrete P-reducible $(alpha,beta)$-metric with vanishing S-curvature.
In this paper, by using monotonicity formulas for vector bundle-valued $p$-forms satisfying the conservation law, we first obtain general $L^2$ global rigidity theorems for locally conformally flat (LCF) manifolds with constant scalar curvature, under curvature pinching conditions. Secondly, we prove vanishing results for $L^2$ and some non-$L^2$ harmonic $p$-forms on LCF manifolds, by assuming that the underlying manifolds satisfy pointwise or integral curvature conditions. Moreover, by a Theorem of Li-Tam for harmonic functions, we show that the underlying manifold must have only one end. Finally, we obtain Liouville theorems for $p$-harmonic functions on LCF manifolds under pointwise Ricci curvature conditions.
An $(alpha,beta)$-metric is defined by a Riemannian metric $alpha$ and $1$-form $beta$. In this paper, we study a known class of two-dimensional $(alpha,beta)$-metrics of vanishing S-curvature. We determine the local structure of those metrics and show that those metrics are Einsteinian (equivalently, isotropic flag curvature) but generally are not Ricci-flat.
Ambrose, Palais and Singer cite{Ambrose} introduced the concept of second order structures on finite dimensional manifolds. Kumar and Viswanath cite{Kumar} extended these results to the category of Banach manifolds. In the present paper all of these results are generalized to a large class of Frechet manifolds. It is proved that the existence of Christoffel and Hessian structures, connections, sprays and dissections are equivalent on those Frechet manifolds which can be considered as projective limits of Banach manifolds. These concepts provide also an alternative way for the study of ordinary differential equations on non-Banach infinite dimensional manifolds. Concrete examples of the structures are provided using direct and flat connections.