Do you want to publish a course? Click here

Material Platforms for Defect Qubits and Single Photon Emitters

98   0   0.0 ( 0 )
 Added by Jyh-Pin Chou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum technology has grown out of quantum information theory and now provides a valuable tool that researchers from numerous fields can add to their toolbox of research methods. To date, various systems have been exploited to promote the application of quantum information processing. The systems that can be used for quantum technology include superconducting circuits, ultra-cold atoms, trapped ions, semiconductor quantum dots, and solid-state spins and emitters. In this review, we will discuss the state of the art on material platforms for spin-based quantum technology, with a focus on the progress in solid-state spins and emitters in several leading host materials, including diamond, silicon carbide, boron nitride, silicon, two-dimensional semiconductors, and other materials. We will highlight how first-principles calculations can serve as an exceptionally robust tool for finding the novel defect qubits and single photon emitters in solids, through detailed predictions of the electronic, magnetic and optical properties.



rate research

Read More

Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work we demonstrate that diamond films grown by microwave plasma chemical vapour deposition on a silicon substrate host bright, narrowband single photon emitters in the visible to near infrared spectral range. The emitters possess fast lifetime, absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is done to investigate their inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.
We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.
Single photon emitters in 2D hexagonal boron nitride (hBN) have attracted a considerable attention because of their highly intense, stable, and strain-tunable emission. However, the precise source of this emission, in particular the detailed atomistic structure of the involved crystal defect, remains unknown. In this work, we present first-principles calculations of the vibrationally resolved optical fingerprint of the spin-triplet (2)(_^3)B_1 to (1)(_^3)B_1 transition of the VNCB point defect in hBN. Based on the excellent agreement with experiments for key spectroscopic quantities such as the emission frequency and polarization, the photoluminescence (PL) line shape, Huang-Rhys factor, Debye-Waller factor, and re-organization energy, we conclusively assign the observed single photon emission at ~2eV to the VNCB defect. Our work thereby resolves a long-standing debate about the exact chemical nature of the source of single photon emission from hBN and establishes the microscopic understanding necessary for controlling and applying such photons for quantum technological applications.
The realization of scalable systems for quantum information processing and networking is of utmost importance to the quantum information community. However, building such systems is difficult because of challenges in achieving all the necessary functionalities on a unified platform while maintaining stringent performance requirements of the individual elements. A promising approach which addresses this challenge is based on the consolidation of experimental and theoretical capabilities in quantum physics and integrated photonics. Integrated quantum photonics devices allow efficient control and read-out of quantum information while being scalable and cost effective. Here we review recent developments in solid-state single photon emitters coupled with various integrated photonic structures, which form a critical component of future scalable quantum devices. Our work contributes to the further development and realization of quantum networking protocols and quantum logic on a scalable and fabrication-friendly platform.
Solid-state defect qubit systems with spin-photon interfaces show great promise for quantum information and metrology applications. Photon collection efficiency, however, presents a major challenge for defect qubits in high refractive index host materials. Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface including spectral response, photon polarization and collection mode. Further, the design process can incorporate additional constraints, such as fabrication tolerance and material processing limitations. Here we design and demonstrate a compact hybrid gallium phosphide on diamond inverse-design planar dielectric structure coupled to single near-surface nitrogen-vacancy centers formed by implantation and annealing. We observe device operation near the theoretical limit and measure up to a 14-fold broadband enhancement in photon extraction efficiency. We expect that such inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا