Do you want to publish a course? Click here

Performance evaluation of the aerogel RICH counter for the Belle II spectrometer using early beam collision data

424   0   0.0 ( 0 )
 Added by Masanobu Yonenaga
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Aerogel Ring Imaging Cherenkov (ARICH) counter serves as a particle identification device in the forward end-cap region of the Belle II spectrometer. It is capable of identifying pions and kaons with momenta up to $4 , {rm GeV}/c$ by detecting Cherenkov photons emitted in the silica aerogel radiator. After the detector alignment and calibration of the probability density function, we evaluate the performance of the ARICH counter using early beam collision data. Event samples of $D^{ast +} to D^0 pi^+ (D^0 to K^-pi^+)$ were used to determine the $pi(K)$ efficiency and the $K(pi)$ misidentification probability. We found that the ARICH counter is capable of separating kaons from pions with an identification efficiency of $93.5 pm 0.6 , %$ at a pion misidentification probability of $10.9 pm 0.9 , %$. This paper describes the identification method of the counter and the evaluation of the performance during its early operation.



rate research

Read More

We report on the design and commissioning of two silica aerogel Cherenkov detectors with different refractive indices. In particular, extraordinary performance in terms of the number of detected photoelectrons was achieved through an appropriate choice of PMT type and reflector, along with some design considerations. After four years of operation, the number of detected photoelectrons was found to be noticeably reduced in both detectors as a result of contamination, yellowing, of the aerogel material. Along with the details of the set-up, we illustrate the characteristics of the detectors during different time periods and the probable causes of the contamination. In particular we show that the replacement of the contaminated aerogel and parts of the reflecting material has almost restored the initial performance of the detectors.
72 - Y. Maeda 2017
The Time-Of-Propagation (TOP) counter is a novel device for particle identification for the barrel region of the Belle II experiment, where, information of Cherenkov light propagation time is used to reconstruct its ring image. We successfully finished the detector production and installation to the Belle II structure in 2016. Commissioning of the installed detector has been on going, where the detector operation in the 1.5-T magnetic field was studied. Although we found a problem where photomultipliers were mechanically moved due to the magnetic force, it was immediately fixed. Performance was evaluated with cosmic ray data, the number of photon hits were confirmed to be consistent with simulation within 15-30%.
The Belle II experiment at the Super B factory SuperKEKB, an asymmetric $e^+e^-$ collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the $Upsilon(4S)$ resonance of $m_{Upsilon(4S)} = 10.58,rm GeV$. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only $75,rmmu m$. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
438 - Thomas Ge{ss}ler 2014
We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppression, dominated by background. The Online Selection Nodes (ONSEN) system aims to reduce the background data by a factor of 30. It consists of 33 MicroTCA cards, each equipped with a Xilinx Virtex-5 FPGA and 4 GiB DDR2 RAM. These cards are hosted by 9 AdvancedTCA carrier boards. The ONSEN system buffers the entire output data from the pixel detector for up to 5 seconds. During this time, the Belle II high-level trigger PC farm performs an online event reconstruction, using data from the other Belle II subdetectors. It extrapolates reconstructed tracks to the layers of the pixel detector and defines regions of interest around the intercepts. Based on this information, the ONSEN system discards all pixels not inside a region of interest before sending the remaining hits to the event builder system. During a beam test with one layer of the pixel detector and four layers of the surrounding silicon strip detector, including a scaled-down version of the high-level trigger and data acquisition system, the pixel data reduction using regions of interest was exercised. We investigated the data produced in more than 20 million events and verified that the ONSEN system behaved correctly, forwarding all pixels inside regions of interest and discarding the rest.
151 - S.Bacher , G.Bassi , L.Bosisio 2021
We designed, constructed and have been operating a system based on single-crystal synthetic diamond sensors, to monitor the beam losses at the interaction region of the SuperKEKB asymmetric-energy electron-positron collider. The system records the radiation dose-rates in positions close to the inner detectors of the Belle II experiment, and protects both the detector and accelerator components against destructive beam losses, by participating in the beam-abort system. It also provides complementary information for the dedicated studies of beam-related backgrounds. We describe the performance of the system during the commissioning of the accelerator and during the first physics data taking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا