No Arabic abstract
We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppression, dominated by background. The Online Selection Nodes (ONSEN) system aims to reduce the background data by a factor of 30. It consists of 33 MicroTCA cards, each equipped with a Xilinx Virtex-5 FPGA and 4 GiB DDR2 RAM. These cards are hosted by 9 AdvancedTCA carrier boards. The ONSEN system buffers the entire output data from the pixel detector for up to 5 seconds. During this time, the Belle II high-level trigger PC farm performs an online event reconstruction, using data from the other Belle II subdetectors. It extrapolates reconstructed tracks to the layers of the pixel detector and defines regions of interest around the intercepts. Based on this information, the ONSEN system discards all pixels not inside a region of interest before sending the remaining hits to the event builder system. During a beam test with one layer of the pixel detector and four layers of the surrounding silicon strip detector, including a scaled-down version of the high-level trigger and data acquisition system, the pixel data reduction using regions of interest was exercised. We investigated the data produced in more than 20 million events and verified that the ONSEN system behaved correctly, forwarding all pixels inside regions of interest and discarding the rest.
The Time-Of-Propagation detector is a Cherenkov particle identification detector based on quartz radiator bars for the Belle II experiment at the SuperKEKB electron-positron collider. The purpose of the detector is to identify the type of charged hadrons produced in electron-positron collisions, and requires a single photon timing resolution below 100 picoseconds. A novel front-end electronic system was designed, built, and integrated to acquire data from the 8192 microchannel plate photomultiplier tube channels in the detector. Waveform sampling of these analog signals is done by switched-capacitor array application-specific integrated circuits. The processes of triggering, digitization of windows of interest, readout, and data transfer to the Belle II data acquisition system are managed by Xilinx Zynq-7000 programmable system on a chip devices.
The Belle II experiment at the Super B factory SuperKEKB, an asymmetric $e^+e^-$ collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the $Upsilon(4S)$ resonance of $m_{Upsilon(4S)} = 10.58,rm GeV$. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only $75,rmmu m$. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
An upgraded asymmetric e+e- flavor factory, SuperKEKB, is planned at KEK. It will deliver a luminosity of 8 x 10^35 cm^-2 s^-1, allowing precision measurements in the flavor sector which can probe new physics well beyond the scales accessible to direct observation. The increased luminosity also requires upgrades of the Belle detector. Of critical importance here is a new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution. This new detector will consist of two detector layers close to the interaction point, using DEPFET pixel sensors with 50 um thick silicon in the active area.
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of the Standard Model by performing precision measurements of its parameters, and provide sensitivity to many rare decays that are currently inaccessible. This will require major upgrades to both the accelerator and detector subsystems. The imaging Time-of-propagation (iTOP) detector will be a new subdetector of Belle-II that will perform an integral role in Particle identification (PID). It will comprise 16 modules between the tracking detectors and calorimeter; each module consisting of a quartz radiator, approximately 2.5m in length, instrumented with an array of 32 micro-channel plate photodetectors (MCP-PMTs). The passage of charged particles through the quartz will produce a cone of Cherenkov photons that will propagate along the length of the quartz, and be detected by the MCP-PMTs. The excellent spatial, and timing resolution (of 50 picoseconds) of the iTOP system will provide superior particle identification capabilities, particularly allowing for enhanced discrimination between pions and kaons that will be essential for many of the key measurements to performed. The status of the construction of the iTOP subdetector, and performance studies of prototypes at beam tests will be presented, together with prospects for physics measurements that will utilise the PID capabilities of the iTOP system.
The Belle II experiment is a high-energy physics experiment at the SuperKEKB electron-positron collider. Using Belle II data, high precision measurement of rare decays and CP-violation in heavy quarks and leptons can be performed to probe New Physics. In this paper, we present the archiver system used to store the monitoring data of the Belle II detector and discuss in particular how we maintain the system that archives the monitoring process variables of the subdetectors. We currently save about 26 thousand variables including the temperature of various subdetectors components, status of water leak sensors, high voltage power supply status, data acquisition status, and luminosity information of the colliding beams. For stable data taking, it is essential to collect and archive these variables. We ensure the availability and consistency of all the variables from the subdetector and other systems, as well as the status of the archiver itself are consistent and regularly updated. To cope with a possible hardware failure, we prepared a backup archiver that is synchronized with the main archiver.