No Arabic abstract
We studied the magnetic properties of self-assembled aggregates of BiFeO3 nanoparticles (~ 20-40 nm). The aggregates formed two different structures - one with limited and another with massive cross-linking - via `drying-mediated self-assembly process following dispersion of the nanoparticles within different organic solvents. They exhibit large coercivity H_C (>1000 Oe) and exchange bias field H_E (~ 350-900 Oe) in comparison to what is observed in isolated nanoparticles (H_C ~ 250 Oe; H_E ~ 0). The H_E turns out to be switching from negative to positive depending on the structure of the aggregates with |H_E| being larger. The magnetic force microscopy reveals the magnetic domains (extending across 7-10 nanoparticles) as well as the domain switching characteristics and corroborate the results of magnetic measurements. Numerical simulation of the `drying-mediated-self-assembly process shows that the nanoparticle-solvent interaction plays an important role in forming the `nanoparticle aggregate structures observed experimentally. Numerical simulation of the magnetic hysteresis loops, on the other hand, points out the importance of spin pinning at the surface of nanoparticles as a result of surface functionalization of the particles in different suspension media. Depending on the concentration of pinned spins at the surface pointing preferably along the easy-axis direction - from greater than 50% to less than 50% - H_E switches from negative to positive. Quite aside from bulk sample and isolated nanoparticle, nanoparticle aggregates - resulting from surface functionalization - therefore, offer remarkable tunability of properties depending on structures.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. We observed that lithium (Li)-doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1-xFeO3 nanoceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping-induced phase separation and local ferroic properties in both the BFO-LFO composite ceramics and self-assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO-LFO composites is supported by first principles calculations. These findings shed light on Li-ion role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites.
Thin highly epitaxial BiFeO$_3$ films were prepared on SrTiO$_3$ (100) substrates by reactive magnetron co-sputtering. Detailed MOKE measurements on BiFeO$_3$/Co-Fe bilayers were performed to investigate the exchange bias as a function of the films thicknesses and Co-Fe stoichiometries. We found a maximum exchange bias of H$_{mathrm{eb}}$=92 Oe and a coercive field of H$_{mathrm{c}}$=89 Oe for a 12.5 nm thick BiFeO$_3$ film with a 2 nm thick Co layer. The unidirectional anisotropy is clearly visible in in-plane rotational MOKE measurements. AMR measurements reveal a strongly increasing coercivity with decreasing temperature, but no significant change in the exchange bias field.
We report the presence of giant spontaneous exchange bias (HSEB) in a hard and soft antiferromagnetic composite of BiFeO3-TbMnO3 (BFO-TMO in 7:3 and 8:2 ratio). The HSEB varies between 5-778Oe, but persists up to room temperature with a maximum near a spin reorientation transition temperature observed from magnetization vs. temperature measurement in Zero-field cooled (ZFC) and Field cooled (FC) modes. Isothermal remnant magnetization measurements at room temperature indicate the presence of an interfacial layer of a 2 dimensional dilute antiferromagnet in a field (2D DAFF). A stable value of the exchange bias has been observed via training effect measurements which signify the role of interfacial exchange coupling in the system. Based on the experimental results we explain the presence of the giant spontaneous exchange bias on the basis of a strong strain-mediated magnetoelectriccoupling induced exchange interaction and the creation of 2D DAFF layer at the interface. Theproperties of this layer are defined by canting and pinning of BFO spins at the interface with TMO due to Fe and Mn interaction. X-ray Magnetic Circular Dichroism (XMCD) confirms the presence of canted antiferromagnetic ordering of BiFeO3, charge transfer between Mn ions and different magnetically coupled layers which play vital role in getting the exchange bias.
We report on the functionalization of multiferroic BiFeO3 epitaxial films for spintronics. A first example is provided by the use of ultrathin layers of BiFeO3 as tunnel barriers in magnetic tunnel junctions with La2/3Sr1/3MnO3 and Co electrodes. In such structures, a positive tunnel magnetoresistance up to 30% is obtained at low temperature. A second example is the exploitation of the antiferromagnetic spin structure of a BiFeO3 film to induce a sizeable (~60 Oe) exchange bias on a ferromagnetic film of CoFeB, at room temperature. Remarkably, the exchange bias effect is robust upon magnetic field cycling, with no indications of training.
We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnetization reversal sequence of the two ferromagnetic layers is found to depend on the type of NiFe alloy. In the samples with 75% relative content of Ni, the bottom ferromagnetic layer reverses prior to the top one. On the contrary, in the samples with 40% of Ni, the top ferromagnetic layer reverses prior to the bottom one. These tendencies of magnetization reversal are preserved in the entire range of temperatures. These distinctions can be explained by the morphological and structural differences of interfaces in the samples based on two types of Permalloy.