Do you want to publish a course? Click here

Why are U.S. Parties So Polarized? A Satisficing Dynamical Model

67   0   0.0 ( 0 )
 Added by Vicky Chuqiao Yang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since the 1960s, Democrats and Republicans in U.S. Congress have taken increasingly polarized positions, while the publics policy positions have remained centrist and moderate. We explain this apparent contradiction by developing a dynamical model that predicts ideological positions of political parties. Our approach tackles the challenge of incorporating bounded rationality into mathematical models and integrates the empirical finding of satisficing decision making---voters settle for candidates who are good enough when deciding for whom to vote. We test the model using data from the U.S. Congress over the past 150 years, and find that our predictions are consistent with the two major political parties historical trajectory. In particular, the model explains how polarization between the Democrats and Republicans since the 1960s could be a consequence of increasing ideological homogeneity within the parties.



rate research

Read More

A key question concerning collective decisions is whether a social system can settle on the best available option when some members learn from others instead of evaluating the options on their own. This question is challenging to study, and previous research has reached mixed conclusions, because collective decision outcomes depend on the insufficiently understood complex system of cognitive strategies, task properties, and social influence processes. This study integrates these complex interactions together in one general yet partially analytically tractable mathematical framework using a dynamical system model. In particular, it investigates how the interplay of the proportion of social learners, the relative merit of options, and the type of conformity response affect collective decision outcomes in a binary choice. The model predicts that when the proportion of social learners exceeds a critical threshold, a bi-stable state appears in which the majority can end up favoring either the higher- or lower-merit option, depending on fluctuations and initial conditions. Below this threshold, the high-merit option is chosen by the majority. The critical threshold is determined by the conformity response function and the relative merits of the two options. The study helps reconcile disagreements about the effect of social learners on collective performance and proposes a mathematical framework that can be readily adapted to extensions investigating a wider variety of dynamics.
101 - P. K. Mohanty 2007
In many professons employees are rewarded according to their relative performance. Corresponding economy can be modeled by taking $N$ independent agents who gain from the market with a rate which depends on their current gain. We argue that this simple realistic rate generates a scale free distribution even though intrinsic ability of agents are marginally different from each other. As an evidence we provide distribution of scores for two different systems (a) the global stock game where players invest in real stock market and (b) the international cricket.
In this paper, a mathematical model is proposed to analyze the dynamic behavior of COVID-19. Based on inter-city networked coupling effects, a fractional-order SEIHDR system with the real-data from 23 January to 18 March, 2020 of COVID-19 is discussed. Meanwhile, hospitalized individuals and the mortality rates of three types of individuals (exposed, infected and hospitalized) are firstly taken into account in the proposed model. And infectivity of individuals during incubation is also considered in this paper. By applying least squares method and predictor-correctors scheme, the numerical solutions of the proposed system in the absence of the inter-city network and with the inter-city network are stimulated by using the real-data from 23 January to $18-m$ March, 2020 where $m$ is equal to the number of prediction days. Compared with integer-order system ($alpha=0$), the fractional-order model without network is validated to have a better fitting of the data on Beijing, Shanghai, Wuhan, Huanggang and other cities. In contrast to the case without network, the results indicate that the inter-city network system may be not a significant case to virus spreading for China because of the lock down and quarantine measures, however, it may have an impact on cities that have not adopted city closure. Meanwhile, the proposed model better fits the data from 24 February to 31, March in Italy, and the peak number of confirmed people is also predicted by this fraction-order model. Furthermore, the existence and uniqueness of a bounded solution under the initial condition are considered in the proposed system. Afterwards, the basic reproduction number $R_0$ is analyzed and it is found to hold a threshold: the disease-free equilibrium point is locally asymptotically stable when $R_0le 1$, which provides a theoretical basis for whether COVID-19 will become a pandemic in the future.
81 - Jing Ge , Daihai He , Zhigui Lin 2020
In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighed networked system based on a classical SEAIR epidemiological model. Five stages have been taken into consideration according to four-tier response to Public Health Crisis, which comes from the National Contingency Plan in China. Staggered basic reproduction number has been derived and we evaluate the effectiveness of lockdown and social distancing policies under different scenarios among 19 cities/regions in mainland China. Further, we estimate the infection risk associated with the sequential release based on population mobility between cities and the intensity of some non-pharmaceutical interventions. Our results reveal that Level I public health emergency response is necessary for high-risk cities, which can flatten the COVID-19 curve effectively and quickly. Moreover, properly designed staggered-release policies are extremely significant for the prevention and control of COVID-19, furthermore, beneficial to economic activities and social stability and development.
Fitting model parameters to experimental data is a common yet often challenging task, especially if the model contains many parameters. Typically, algorithms get lost in regions of parameter space in which the model is unresponsive to changes in parameters, and one is left to make adjustments by hand. We explain this difficulty by interpreting the fitting process as a generalized interpretation procedure. By considering the manifold of all model predictions in data space, we find that cross sections have a hierarchy of widths and are typically very narrow. Algorithms become stuck as they move near the boundaries. We observe that the model manifold, in addition to being tightly bounded, has low extrinsic curvature, leading to the use of geodesics in the fitting process. We improve the convergence of the Levenberg-Marquardt algorithm by adding the geodesic acceleration to the usual Levenberg-Marquardt step.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا