Do you want to publish a course? Click here

Power and spectral characterization of photonic integrated circuit based axicon like lens

58   0   0.0 ( 0 )
 Added by Rijan Maharjan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate an on-chip Silicon-on-Insulator (SOI) axicon etched using a low resolution (200 nm feature size, 250 nm gap) deep-ultraviolet lithographic fabrication. The axicon consists of circular gratings with seven stages of 1x2 multimode interferometers. We present a technique to apodize the gratings azimuthally by breaking up the circles into arcs which successfully increased the penetration depth in the gratings from $approx$5 $mu$m to $approx$55 $mu$m. We characterize the devices performance by coupling 1300$pm$50 nm swept source laser in to the chip from the axicon, and measuring the out-coupled light from a grating coupler. Further, we also present the implementation of balanced homodyne detection method for the spectral characterization of the device and show that the position of the output lobe of the axicon does not change significantly with wavelength.

rate research

Read More

Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks, which are encountered in fundamental areas and real-world practical problems including logistics, social networks, and cryptography. Physical machines have recently been proposed and implemented as an alternative to conventional exact and heuristic solvers for the Ising problem, one such optimization task that requires finding the ground state spin configuration of an arbitrary Ising graph. However, these physical approaches usually suffer from decreased ground state convergence probability or universality for high edge-density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated nanophotonic recurrent Ising sampler (INPRIS) capable of converging to the ground state of various 4-spin graphs with high probability. The INPRIS exploits experimental physical noise as a resource to speed up the ground state search. By injecting additional extrinsic noise during the algorithm iterations, the INPRIS explores larger regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent photonic transformation that our machine imparts is a fixed function of the graph problem, and could thus be implemented with optoelectronic architectures that enable GHz clock rates (such as passive or non-volatile photonic circuits that do not require reprogramming at each iteration), our work paves a way for orders-of-magnitude speedups in exploring the solution space of combinatorially hard problems.
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7x7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis (BOCDA) to locally measure the SBS spectrum with high spatial resolution of 800 {mu}m and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit (PIC). This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift (BFS) and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.
Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cut-off at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.
A photonic integrated circuit comprised of an 11 cm multimode speckle waveguide, a 1x32 splitter, and a linear grating coupler array is fabricated and utilized to receive 2 GHz of RF signal bandwidth from 2.5 to 4.5 GHz using a 35 MHz mode locked laser.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا