Do you want to publish a course? Click here

Highly localized Brillouin scattering response in a photonic integrated circuit

100   0   0.0 ( 0 )
 Added by Birgit Stiller
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis (BOCDA) to locally measure the SBS spectrum with high spatial resolution of 800 {mu}m and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit (PIC). This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift (BFS) and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

rate research

Read More

Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) applications including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Historically, such lasers are implemented at the tabletop scale, using semiconductor lasers stabilized to large optical reference cavities. Photonic integration of high spectral-purity visible light sources will enable experiments to increase in complexity and scale. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. While progress has been made on integrated SBS lasers at telecommunications wavelengths, barriers have existed to translate this performance to the visible, namely the realization of Brillouin-active waveguides in ultra-low optical loss photonics. We have overcome this barrier, demonstrating the first visible light photonic integrated SBS laser, which operates at 674 nm to address the 88Sr+ optical clock transition. To guide the laser design, we use a combination of multi-physics simulation and Brillouin spectroscopy in a 2 meter spiral waveguide to identify the 25.110 GHz first order Stokes frequency shift and 290 MHz gain bandwidth. The laser is implemented in an 8.9 mm radius silicon nitride all-waveguide resonator with 1.09 dB per meter loss and Q of 55.4 Million. Lasing is demonstrated, with an on-chip 14.7 mW threshold, a 45% slope efficiency, and linewidth narrowing as the pump is increased from below threshold to 269 Hz. To illustrate the wavelength flexibility of this design, we also demonstrate lasing at 698 nm, the wavelength for the optical clock transition in neutral strontium. This demonstration of a waveguide-based, photonic integrated SBS laser that operates in the visible, and the reduced size and sensitivity to environmental disturbances, shows promise for diverse AMO applications.
Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks, which are encountered in fundamental areas and real-world practical problems including logistics, social networks, and cryptography. Physical machines have recently been proposed and implemented as an alternative to conventional exact and heuristic solvers for the Ising problem, one such optimization task that requires finding the ground state spin configuration of an arbitrary Ising graph. However, these physical approaches usually suffer from decreased ground state convergence probability or universality for high edge-density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated nanophotonic recurrent Ising sampler (INPRIS) capable of converging to the ground state of various 4-spin graphs with high probability. The INPRIS exploits experimental physical noise as a resource to speed up the ground state search. By injecting additional extrinsic noise during the algorithm iterations, the INPRIS explores larger regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent photonic transformation that our machine imparts is a fixed function of the graph problem, and could thus be implemented with optoelectronic architectures that enable GHz clock rates (such as passive or non-volatile photonic circuits that do not require reprogramming at each iteration), our work paves a way for orders-of-magnitude speedups in exploring the solution space of combinatorially hard problems.
Photonic systems and technologies traditionally relegated to table-top experiments are poised to make the leap from the laboratory to real-world applications through integration. Stimulated Brillouin scattering (SBS) lasers, through their unique linewidth narrowing properties, are an ideal candidate to create highly-coherent waveguide integrated sources. In particular, cascaded-order Brillouin lasers show promise for multi-line emission, low-noise microwave generation and other optical comb applications. Photonic integration of these lasers can dramatically improve their stability to environmental and mechanical disturbances, simplify their packaging, and lower cost. While single-order silicon and cascade-order chalcogenide waveguide SBS lasers have been demonstrated, these lasers produce modest emission linewidths of 10-100 kHz. We report the first demonstration of a sub-Hz (~0.7 Hz) fundamental linewidth photonic-integrated Brillouin cascaded-order laser, representing a significant advancement in the state-of-the-art in integrated waveguide SBS lasers. This laser is comprised of a bus-ring resonator fabricated using an ultra-low loss Si3N4 waveguide platform. To achieve a sub-Hz linewidth, we leverage a high-Q, large mode volume, single polarization mode resonator that produces photon generated acoustic waves without phonon guiding. This approach greatly relaxes phase matching conditions between polarization modes, and optical and acoustic modes. Using a theory for cascaded-order Brillouin laser dynamics, we determine the fundamental emission linewidth of the first Stokes order by measuring the beat-note linewidth between and the relative powers of the first and third Stokes orders. Extension to the visible and near-IR wavebands is possible due to the low optical loss from 405 nm to 2350 nm, paving the way to photonic-integrated sub-Hz lasers for visible-light applications.
We investigate intermodal forward Brillouin scattering in a solid-core PCF, demonstrating efficient power conversion between the HE11 and HE21 modes, with a maximum gain coefficient of 21.4/W/km. By exploring mechanical modes of different symmetries, we observe both polarization-dependent and polarization-independent intermodal Brillouin interaction. Finally, we discuss the role of squeeze film air damping and leakage mechanisms, ultimately critical to the engineering of PCF structures with enhanced interaction between high order optical modes through flexural mechanical modes.
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7x7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا