No Arabic abstract
We present the Language Interpretability Tool (LIT), an open-source platform for visualization and understanding of NLP models. We focus on core questions about model behavior: Why did my model make this prediction? When does it perform poorly? What happens under a controlled change in the input? LIT integrates local explanations, aggregate analysis, and counterfactual generation into a streamlined, browser-based interface to enable rapid exploration and error analysis. We include case studies for a diverse set of workflows, including exploring counterfactuals for sentiment analysis, measuring gender bias in coreference systems, and exploring local behavior in text generation. LIT supports a wide range of models--including classification, seq2seq, and structured prediction--and is highly extensible through a declarative, framework-agnostic API. LIT is under active development, with code and full documentation available at https://github.com/pair-code/lit.
The attention layer in a neural network model provides insights into the models reasoning behind its prediction, which are usually criticized for being opaque. Recently, seemingly contradictory viewpoints have emerged about the interpretability of attention weights (Jain & Wallace, 2019; Vig & Belinkov, 2019). Amid such confusion arises the need to understand attention mechanism more systematically. In this work, we attempt to fill this gap by giving a comprehensive explanation which justifies both kinds of observations (i.e., when is attention interpretable and when it is not). Through a series of experiments on diverse NLP tasks, we validate our observations and reinforce our claim of interpretability of attention through manual evaluation.
Natural Language Processing (NLP) models have become increasingly more complex and widespread. With recent developments in neural networks, a growing concern is whether it is responsible to use these models. Concerns such as safety and ethics can be partially addressed by providing explanations. Furthermore, when models do fail, providing explanations is paramount for accountability purposes. To this end, interpretability serves to provide these explanations in terms that are understandable to humans. Central to what is understandable is how explanations are communicated. Therefore, this survey provides a categorization of how recent interpretability methods communicate explanations and discusses the methods in depth. Furthermore, the survey focuses on post-hoc methods, which provide explanations after a model is learned and generally model-agnostic. A common concern for this class of methods is whether they accurately reflect the model. Hence, how these post-hoc methods are evaluated is discussed throughout the paper.
Today, interpretability of Black-Box Natural Language Processing (NLP) models based on surrogates, like LIME or SHAP, uses word-based sampling to build the explanations. In this paper we explore the use of sentences to tackle NLP interpretability. While this choice may seem straight forward, we show that, when using complex classifiers like BERT, the word-based approach raises issues not only of computational complexity, but also of an out of distribution sampling, eventually leading to non founded explanations. By using sentences, the altered text remains in-distribution and the dimensionality of the problem is reduced for better fidelity to the black-box at comparable computational complexity.
For machine learning models to be most useful in numerous sociotechnical systems, many have argued that they must be human-interpretable. However, despite increasing interest in interpretability, there remains no firm consensus on how to measure it. This is especially true in representation learning, where interpretability research has focused on disentanglement measures only applicable to synthetic datasets and not grounded in human factors. We introduce a task to quantify the human-interpretability of generative model representations, where users interactively modify representations to reconstruct target instances. On synthetic datasets, we find performance on this task much more reliably differentiates entangled and disentangled models than baseline approaches. On a real dataset, we find it differentiates between representation learning methods widely believed but never shown to produce more or less interpretable models. In both cases, we ran small-scale think-aloud studies and large-scale experiments on Amazon Mechanical Turk to confirm that our qualitative and quantitative results agreed.
Lending decisions are usually made with proprietary models that provide minimally acceptable explanations to users. In a future world without such secrecy, what decision support tools would one want to use for justified lending decisions? This question is timely, since the economy has dramatically shifted due to a pandemic, and a massive number of new loans will be necessary in the short term. We propose a framework for such decisions, including a globally interpretable machine learning model, an interactive visualization of it, and several types of summaries and explanations for any given decision. The machine learning model is a two-layer additive risk model, which resembles a two-layer neural network, but is decomposable into subscales. In this model, each node in the first (hidden) layer represents a meaningful subscale model, and all of the nonlinearities are transparent. Our online visualization tool allows exploration of this model, showing precisely how it came to its conclusion. We provide three types of explanations that are simpler than, but consistent with, the global model: case-based reasoning explanations that use neighboring past cases, a set of features that were the most important for the models prediction, and summary-explanations that provide a customized sparse explanation for any particular lending decision made by the model. Our framework earned the FICO recognition award for the Explainable Machine Learning Challenge, which was the first public challenge in the domain of explainable machine learning.