No Arabic abstract
The attention layer in a neural network model provides insights into the models reasoning behind its prediction, which are usually criticized for being opaque. Recently, seemingly contradictory viewpoints have emerged about the interpretability of attention weights (Jain & Wallace, 2019; Vig & Belinkov, 2019). Amid such confusion arises the need to understand attention mechanism more systematically. In this work, we attempt to fill this gap by giving a comprehensive explanation which justifies both kinds of observations (i.e., when is attention interpretable and when it is not). Through a series of experiments on diverse NLP tasks, we validate our observations and reinforce our claim of interpretability of attention through manual evaluation.
Recent advances in NLP demonstrate the effectiveness of training large-scale language models and transferring them to downstream tasks. Can fine-tuning these models on tasks other than language modeling further improve performance? In this paper, we conduct an extensive study of the transferability between 33 NLP tasks across three broad classes of problems (text classification, question answering, and sequence labeling). Our results show that transfer learning is more beneficial than previously thought, especially when target task data is scarce, and can improve performance even when the source task is small or differs substantially from the target task (e.g., part-of-speech tagging transfers well to the DROP QA dataset). We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task, and we validate their effectiveness in experiments controlled for source and target data size. Overall, our experiments reveal that factors such as source data size, task and domain similarity, and task complexity all play a role in determining transferability.
Natural Language Processing (NLP) models have become increasingly more complex and widespread. With recent developments in neural networks, a growing concern is whether it is responsible to use these models. Concerns such as safety and ethics can be partially addressed by providing explanations. Furthermore, when models do fail, providing explanations is paramount for accountability purposes. To this end, interpretability serves to provide these explanations in terms that are understandable to humans. Central to what is understandable is how explanations are communicated. Therefore, this survey provides a categorization of how recent interpretability methods communicate explanations and discusses the methods in depth. Furthermore, the survey focuses on post-hoc methods, which provide explanations after a model is learned and generally model-agnostic. A common concern for this class of methods is whether they accurately reflect the model. Hence, how these post-hoc methods are evaluated is discussed throughout the paper.
Today, interpretability of Black-Box Natural Language Processing (NLP) models based on surrogates, like LIME or SHAP, uses word-based sampling to build the explanations. In this paper we explore the use of sentences to tackle NLP interpretability. While this choice may seem straight forward, we show that, when using complex classifiers like BERT, the word-based approach raises issues not only of computational complexity, but also of an out of distribution sampling, eventually leading to non founded explanations. By using sentences, the altered text remains in-distribution and the dimensionality of the problem is reduced for better fidelity to the black-box at comparable computational complexity.
There have been various types of pretraining architectures including autoregressive models (e.g., GPT), autoencoding models (e.g., BERT), and encoder-decoder models (e.g., T5). On the other hand, NLP tasks are different in nature, with three main categories being classification, unconditional generation, and conditional generation. However, none of the pretraining frameworks performs the best for all tasks, which introduces inconvenience for model development and selection. We propose a novel pretraining framework GLM (General Language Model) to address this challenge. Compared to previous work, our architecture has three major benefits: (1) it performs well on classification, unconditional generation, and conditional generation tasks with one single pretrained model; (2) it outperforms BERT-like models on classification due to improved pretrain-finetune consistency; (3) it naturally handles variable-length blank filling which is crucial for many downstream tasks. Empirically, GLM substantially outperforms BERT on the SuperGLUE natural language understanding benchmark with the same amount of pre-training data. Moreover, GLM with 1.25x parameters of BERT-Large achieves the best performance in NLU, conditional and unconditional generation at the same time, which demonstrates its generalizability to different downstream tasks.
Many NLP tasks such as tagging and machine reading comprehension are faced with the severe data imbalance issue: negative examples significantly outnumber positive examples, and the huge number of background examples (or easy-negative examples) overwhelms the training. The most commonly used cross entropy (CE) criteria is actually an accuracy-oriented objective, and thus creates a discrepancy between training and test: at training time, each training instance contributes equally to the objective function, while at test time F1 score concerns more about positive examples. In this paper, we propose to use dice loss in replacement of the standard cross-entropy objective for data-imbalanced NLP tasks. Dice loss is based on the Sorensen-Dice coefficient or Tversky index, which attaches similar importance to false positives and false negatives, and is more immune to the data-imbalance issue. To further alleviate the dominating influence from easy-negative examples in training, we propose to associate training examples with dynamically adjusted weights to deemphasize easy-negative examples.Theoretical analysis shows that this strategy narrows down the gap between the F1 score in evaluation and the dice loss in training. With the proposed training objective, we observe significant performance boost on a wide range of data imbalanced NLP tasks. Notably, we are able to achieve SOTA results on CTB5, CTB6 and UD1.4 for the part of speech tagging task; SOTA results on CoNLL03, OntoNotes5.0, MSRA and OntoNotes4.0 for the named entity recognition task; along with competitive results on the tasks of machine reading comprehension and paraphrase identification.