Do you want to publish a course? Click here

Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot

464   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The classification of supernovae (SNe) and its impact on our understanding of the explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification, connecting SN light curves back to their spectroscopically defined classes. Here we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class.



rate research

Read More

Automated classification of supernovae (SNe) based on optical photometric light curve information is essential in the upcoming era of wide-field time domain surveys, such as the Legacy Survey of Space and Time (LSST) conducted by the Rubin Observatory. Photometric classification can enable real-time identification of interesting events for extended multi-wavelength follow-up, as well as archival population studies. Here we present the complete sample of 5,243 SN-like light curves (in griz) from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). The PS1-MDS is similar to the planned LSST Wide-Fast-Deep survey in terms of cadence, filters and depth, making this a useful training set for the community. Using this dataset, we train a novel semi-supervised machine learning algorithm to photometrically classify 2,315 new SN-like light curves with host galaxy spectroscopic redshifts. Our algorithm consists of a random forest supervised classification step and a novel unsupervised step in which we introduce a recurrent autoencoder neural network (RAENN). Our final pipeline, dubbed SuperRAENN, has an accuracy of 87% across five SN classes (Type Ia, Ibc, II, IIn, SLSN-I). We find the highest accuracy rates for Type Ia SNe and SLSNe and the lowest for Type Ibc SNe. Our complete spectroscopically- and photometrically-classified samples break down into: 62.0% Type Ia (1839 objects), 19.8% Type II (553 objects), 4.8% Type IIn (136 objects), 11.7% Type Ibc (291 objects), and 1.6% Type I SLSNe (54 objects). Finally, we discuss how this algorithm can be modified for online LSST data streams.
Photometric classification of supernovae (SNe) is imperative as recent and upcoming optical time-domain surveys, such as the Large Synoptic Survey Telescope (LSST), overwhelm the available resources for spectrosopic follow-up. Here we develop a range of light curve classification pipelines, trained on 518 spectroscopically-classified SNe from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS): 357 Type Ia, 93 Type II, 25 Type IIn, 21 Type Ibc, and 17 Type I SLSNe. We present a new parametric analytical model that can accommodate a broad range of SN light curve morphologies, including those with a plateau, and fit this model to data in four PS1 filters (griz). We test a number of feature extraction methods, data augmentation strategies, and machine learning algorithms to predict the class of each SN. Our best pipelines result in 90% average accuracy, 70% average purity, and 80% average completeness for all SN classes, with the highest success rates for Type Ia SNe and SLSNe and the lowest for Type Ibc SNe. Despite the greater complexity of our classification scheme, the purity of our Type Ia SN classification, 95%, is on par with methods developed specifically for Type Ia versus non-Type Ia binary classification. As the first of its kind, this study serves as a guide to developing and training classification algorithms for a wide range of SN types with a purely empirical training set, particularly one that is similar in its characteristics to the expected LSST main survey strategy. Future work will implement this classification pipeline on ~3000 PS1/MDS light curves that lack spectroscopic classification.
The Pan-STARRS1 survey is obtaining multi-epoch imaging in 5 bands (gps rps ips zps yps) over the entire sky North of declination -30deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors, the measurement of photometric redshifts for extragalactic objects, and constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited dataset down to the SDSS spectroscopic limits and therefore potentially improvable, show that stars are correctly classified as such in 85% of cases, galaxies in 97% and QSOs in 84%. False positives are less than 1% for galaxies, ~19% for stars and ~28% QSOs. Moreover, photometric redshifts for 1000 luminous red galaxies up to redshift 0.5 are determined to 2.4% precision with just 0.4% catastrophic outliers and small (-0.5%) residual bias. PCS will create a value added catalog with classifications and photometric redshifts for eventually many millions sources.
We measure quasar variability using the Panoramic Survey Telescope and Rapid Response System 1 Survey (Pan-STARRS1 or PS1) and the Sloan Digital Sky Survey (SDSS) and establish a method of selecting quasars via their variability in 10,000 square degree surveys. We use 100,000 spectroscopically confirmed quasars that have been well measured in both PS1 and SDSS and take advantage of the decadal time scales that separate SDSS measurements and PS1 measurements. A power law model fits the data well over the entire time range tested, 0.01 to 10 years. Variability in the current PS1-SDSS dataset can efficiently distinguish between quasars and non-varying objects. It improves the purity of a griz quasar color cut from 4.1% to 48% while maintaining 67% completeness. Variability will be very effective at finding quasars in datasets with no u band and in redshift ranges where exclusively photometric selection is not efficient. We show that quasars rest-frame ensemble variability, measured as a root mean squared in delta magnitudes, is consistent with V(z, L, t) = A0 (1+z)^0.37 (L/L0)^-0.16 (t/1yr)^0.246 , where L0 = 10^46 ergs^-1 and A0 = 0.190, 0.162, 0.147 or 0.141 in the gP1 , rP1 , iP1 or zP1 filter, respectively. We also fit across all four filters and obtain median variability as a function of z, L and lambda as V(z, L, lambda, t) = 0.079(1 + z)^0.15 (L/L0 )^-0.2 (lambda/1000 nm)^-0.44 (t/1yr)^0.246 .
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا