No Arabic abstract
The Pan-STARRS1 survey is obtaining multi-epoch imaging in 5 bands (gps rps ips zps yps) over the entire sky North of declination -30deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors, the measurement of photometric redshifts for extragalactic objects, and constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited dataset down to the SDSS spectroscopic limits and therefore potentially improvable, show that stars are correctly classified as such in 85% of cases, galaxies in 97% and QSOs in 84%. False positives are less than 1% for galaxies, ~19% for stars and ~28% QSOs. Moreover, photometric redshifts for 1000 luminous red galaxies up to redshift 0.5 are determined to 2.4% precision with just 0.4% catastrophic outliers and small (-0.5%) residual bias. PCS will create a value added catalog with classifications and photometric redshifts for eventually many millions sources.
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.
The classification of supernovae (SNe) and its impact on our understanding of the explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification, connecting SN light curves back to their spectroscopically defined classes. Here we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class.
We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for which the spectroscopic redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photometric redshift of a galaxy is then estimated by means of a local linear regression in a 5-dimensional magnitude and colour space. Our method achieves an average bias of $overline{Delta z_{rm norm}}=-2.01 times 10^{-4}$, a standard deviation of $sigma(Delta z_{rm norm})=0.0298$, and an outlier rate of $P_o=4.32%$ when cross-validating on the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic redshifts is noisier than for SDSS colours, the results obtained by our method are very close to those yielded by SDSS data. The proposed method has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky ($sim 3/4$ vs $sim 1/3$). The training set and the code implementing this method are publicly available at www.testaddress.com.
Photometric classification of supernovae (SNe) is imperative as recent and upcoming optical time-domain surveys, such as the Large Synoptic Survey Telescope (LSST), overwhelm the available resources for spectrosopic follow-up. Here we develop a range of light curve classification pipelines, trained on 518 spectroscopically-classified SNe from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS): 357 Type Ia, 93 Type II, 25 Type IIn, 21 Type Ibc, and 17 Type I SLSNe. We present a new parametric analytical model that can accommodate a broad range of SN light curve morphologies, including those with a plateau, and fit this model to data in four PS1 filters (griz). We test a number of feature extraction methods, data augmentation strategies, and machine learning algorithms to predict the class of each SN. Our best pipelines result in 90% average accuracy, 70% average purity, and 80% average completeness for all SN classes, with the highest success rates for Type Ia SNe and SLSNe and the lowest for Type Ibc SNe. Despite the greater complexity of our classification scheme, the purity of our Type Ia SN classification, 95%, is on par with methods developed specifically for Type Ia versus non-Type Ia binary classification. As the first of its kind, this study serves as a guide to developing and training classification algorithms for a wide range of SN types with a purely empirical training set, particularly one that is similar in its characteristics to the expected LSST main survey strategy. Future work will implement this classification pipeline on ~3000 PS1/MDS light curves that lack spectroscopic classification.
Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the $3pi$ Steradian Survey and the Medium Deep Survey in 5 bands ($grizy_{P1}$). The mean 5$sigma$ point source limiting sensitivities in the stacked 3$pi$ Steradian Survey in $grizy_{P1}$ are (23.3, 23.2, 23.1, 22.3, 21.4) respectively. The upper bound on the systematic uncertainty in the photometric calibration across the sky is 7-12 millimag depending on the bandpass. The systematic uncertainty of the astrometric calibration using the Gaia frame comes from a comparison of the results with Gaia: the standard deviation of the mean and median residuals ($ Delta ra, Delta dec $) are (2.3, 1.7) milliarcsec, and (3.1, 4.8) milliarcsec respectively. The Pan-STARRS system and the design of the PS1 surveys are described and an overview of the resulting image and catalog data products and their basic characteristics are described together with a summary of important results. The images, reduced data products, and derived data products from the Pan-STARRS1 surveys are available to the community from the Mikulski Archive for Space Telescopes (MAST) at STScI.