No Arabic abstract
Present paper deals with the composition and modelling of compact dense astrophysical bodies under the framework of $f(R)$ gravity. The model is employed on various observed strange stars viz., SMC X-1, SAX J1808.4-3658, Swift J1818.0-1607, PSR J1614-2230 and PSR J0348+0432. Upon setting the appropriate value of dimensionless coupling parameter $lambda $, the physical parameters such as the density, the radial and tangential pressures were obtained. Mass-Radius relation without presuming any equation of state is capable enough to accommodate all strange stars nearly having solar mass up to 2.5. The physical viability of the model is examined for all the aforementioned stars and it is found that all the regularity and stability conditions are satisfied.
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $fmathcal{(R)}$. After, the time component of the metric potential and the form of $f(mathcal R)$ function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter $C$ which has to be $C=2GM/Rc^2 <<0.5$ for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman-Oppenheimer-Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.
We find a new method for looking for the static and spherically symmetric solutions in $F(R)$ theory of gravity. With this method, a number of new solutions in terms of the analytic functions are obtained. We hope this investigation may be of some help in the searching for some other solutions in $F(R)$ theory of gravity.
In the context of f(R)=R + alpha R^2 gravity, we study the existence of neutron and quark stars with no intermediate approximations in the generalised system of Tolman-Oppenheimer-Volkov equations. Analysis shows that for positive alphas the scalar curvature does not drop to zero at the star surface (as in General Relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value alpha increases. Nonetheless distant observers would observe a gravitational mass due to appearance of a so-called gravitational sphere around the star. The non-zero curvature contribution to the gravitational mass eventually is shown to compensate the stellar mass decrease for growing alphas. We perform our analysis for several equations of state including purely hadronic configurations as well as hyperons and quark stars. In all cases, we assess that the relation between the parameter $alpha$ and the gravitational mass weakly depend upon the chosen equation of state. Another interesting feature is the increase of the star radius in comparison to General Relativity for stars with masses close to maximal, whereas for intermediate masses around 1.4-1.6 solar masses, the radius of star depends upon alpha very weakly. Also the decrease in the mass bounded by star surface may cause the surface redshift to decrease in R^2-gravity when compared to Einsteinian predictions. This effect is shown to hardly depend upon the observed gravitational mass. Finally, for negative values of alpha our analysis shows that outside the star the scalar curvature has damped oscillations but the contribution of the gravitational sphere into the gravitational mass increases indefinitely with radial distance putting into question the very existence of such relativistic stars.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmology, avoiding the onset of finite time singularities. We also confirm and extend some of results which were obtained in the past for this class of theories.